A Novel Fidelity Based on the Adaptive Domain for Pansharpening

Jin-Liang Xiao

Joint work with Ting-Zhu Huang*, Liang-Jian Deng*, and Ting Xu

University of Electronic Science and Technology of China (UESTC) Chengdu, Sichuan, China

July 10, 2024

< □ > < 同 >

Pansharpening: Variational Optimization (VO) Methods

Proposed Adaptive Domain Fidelity

Proposed Model and Solving Algorithm

- The Proposed Model
- The Solving Algorithm

4 Numerical Experiments

- Reduced-resolution Data
- Full-resolution Data

< □ > < 同 >

Introduction: Pansharpening

- Goal: obtain the high resolution multispectral image (HRMS)
- **Inputs:** the panchromatic image (PAN) and low spatial resolution multispectral image (LRMS).
- $\mathcal{X} \in \mathbb{R}^{H \times W \times S}$: HRMS;
- $\mathcal{Y} \in \mathbb{R}^{h \times w \times S}$: LRMS;
- $\mathbf{P} \in \mathbb{R}^{H \times W}$: PAN.

Image: Image:

Variational Optimization (VO) methods

• Variational Model:

$$\min_{\mathcal{X}} f_{spec}(\mathcal{X}, \mathcal{Y}) + \lambda_1 f_{spa}(\mathcal{X}, \mathbf{P}) + \lambda_2 \Psi(\mathcal{X}),$$

where λ_1 and λ_2 are balance hyperparameters.

- *f_{spec}*: spectral fidelity

$$f_{spec} = \left\| \mathbf{X}_{(3)} \mathbf{B} \mathbf{S} - \mathbf{Y}_{(3)} \right\|_{F}^{2}, \tag{1}$$

Image: A matrix

where $\|\cdot\|_F$ is Frobenius norm, $\mathbf{B} \in \mathbb{R}^{HW \times HW}$ and $\mathbf{S} \in \mathbb{R}^{HW \times hw}$ denote the spatial blurring matrix and down-sampling operator, respectively.

- *f_{spa}*: spatial fidelity is critical for spatial information extraction.
- Ψ: regularization term

Variational Optimization (VO) methods

$$\min_{\mathcal{X}} f_{spe}(\mathcal{X}, \mathcal{Y}) + \lambda_1 f_{spa}(\mathcal{X}, \mathbf{P}) + \lambda_2 \Psi(\mathcal{X}),$$

• Spatial Fidelity *f*_{spa}:

There exists strong similarity between \mathcal{X} and histogram-matched \mathcal{P} [1, 2]

- [Fu et al. 2019]:

$$f_{spa} = \left\| \nabla \mathcal{X} - \nabla \mathcal{P} \right\|_{F}^{2},$$

where ∇ is the gradient operation.

- [Wu et al. 2024]:

Jin-Liang Xiao (UESTC)

. . .

$$f_{spa} = \left\| \mathcal{H}(\mathcal{X}) - \mathcal{H}(\mathcal{P}) + \epsilon \right\|_{F}^{2},$$

where $\mathcal{H}(\cdot)$ is the Framelet transformation, and ϵ is a sparse variable.

The above transformations are fixed.

$$\min_{\mathcal{X}} f_{spe}(\mathcal{X}, \mathcal{Y}) + \lambda_1 f_{spa}(\mathcal{X}, \mathbf{P}) + \lambda_2 \Psi(\mathcal{X}),$$

• Motivation:

- The above transformation should be more flexible;
- The extended PAN ${\cal P}$ should be more accurate for HRMS ${\cal X}$;
- Contrain the residual between the HRMS and PAN well.

• Notation \triangle :

For $\mathcal{A} \in \mathbb{R}^{H \times W \times S}$, $\mathcal{A} = \mathcal{M} \triangle \mathcal{N}$ means $\mathbf{A}^{(i)} = \mathbf{M}^{(i)} \mathbf{N}^{(i)}$, $i = 1, 2, \cdots, S$.

Figure: Slices of a 3rd-order tensor [3].

< □ > < 同 >

• Adaptive Domain Fidelity:

 $\mathit{f_{spa}} = \left\| \mathcal{W} \triangle \mathcal{X} - \mathcal{W} \triangle \mathcal{P} \right\|_{0},$

where $\|\cdot\|_0$ is the ℓ_0 -norm, \mathcal{P} is iteratively updated, and $\mathcal{W}(\cdot)$ is the Adaptive transformation that satisfies $\mathbf{W}^{(i)}{}^T\mathbf{W}^{(i)} = \mathbf{I}, i = 1, \cdots, S$, and r is a fixed parameter of the transform.

- Motivation:
- The above transformation should be more flexible \rightarrow adaptive updated transformation W
- The extended PAN ${\cal P}$ should be more accurate for HRMS ${\cal X} \to {\sf revise} \; {\cal P}$ iteratively
- Constrain the residual between the HRMS and PAN well $\rightarrow \ell_0\text{-norm}$ constraint

$$\min_{\mathcal{X}} \left\| \mathbf{X}_{(3)} \mathbf{B} \mathbf{S} - \mathbf{Y}_{(3)} \right\|_{F}^{2} + \lambda \left\| \mathcal{W} \triangle \mathcal{X} - \mathcal{W} \triangle \mathcal{P} \right\|_{0},$$
(2)

We use the ADMM [4] to solve the proposed model (2). By introducing auxiliary variables $\mathbf{U} = \mathbf{X}_{(3)}\mathbf{B}$ and $\mathcal{V} = \mathcal{W} \triangle \mathcal{X} - \mathcal{W} \triangle \mathcal{P}$, the augmented Lagrangian function concerning (2) is

$$L = \left\| \mathbf{U}\mathbf{S} - \mathbf{Y}_{(3)} \right\|_{F}^{2} + \frac{\eta_{1}}{2} \left\| \mathbf{X}_{(3)}\mathbf{B} - \mathbf{U} + \frac{\mathbf{G}_{1}}{\eta_{1}} \right\|_{F}^{2} + \frac{\eta_{2}}{2} \left\| \mathcal{W} \triangle \mathcal{X} - \mathcal{W} \triangle \mathcal{P} - \mathcal{V} + \frac{\mathcal{G}_{2}}{\eta_{2}} \right\|_{F}^{2} + \lambda \left\| \mathcal{V} \right\|_{0},$$
(3)

where η_1 and η_2 are parameters, $\mathbf{G}_1 \in \mathbb{R}^{S \times HW}$ and $\mathcal{G}_2 \in \mathbb{R}^{r \times W \times S}$ are Lagrangian multipliers.

$\bullet \ \mathcal{W}$ Sub-problem:

$$\mathcal{W}^{k+1} = \arg\min_{\mathcal{W}} \left\| \mathcal{W} \triangle (\mathcal{X}^{k+1} - \mathcal{P}^{k+1}) - \mathcal{V}^{k+1} + \frac{\mathcal{G}_2^{k+1}}{\eta_2} \right\|_F^2 + \frac{\rho}{2} \left\| \mathcal{W} - \mathcal{W}^k \right\|_F^2.$$
(4)

Since $\mathbf{W}^{(i)T}\mathbf{W}^{(i)} = \mathbf{I}, i = 1, \cdots, S$, we have

$$(\mathbf{W}^k)^{(i)} = \mathbf{E}^{(i)} \mathbf{F}^{(i)^T}, i = 1, \cdots, S,$$
(5)

where $\mathbf{E}^{(i)} \mathbf{\Sigma}^{(i)} (\mathbf{F}^{(i)})^T$ is the singular value decomposition of $(\mathbf{V}^{k+1} - \frac{\mathbf{G}_2^{k+1}}{\eta_2})^{(i)} ((\mathbf{X}^{k+1} - \mathbf{P}^{k+1})^{(i)})^T + \rho(\mathbf{W}^k)^{(i)}$ (refer to [5]).

• \mathcal{V} Sub-problem:

$$\mathcal{V}^{k+1} = \arg\min_{\mathcal{V}} \lambda \left\| \mathcal{V} \right\|_{0} + \frac{\eta_{2}}{2} \left\| \mathcal{W}^{k} \triangle \mathcal{X}^{k+1} - \mathcal{W}^{k} \triangle \mathcal{P}^{k} - \mathcal{V} + \frac{\mathcal{G}_{2}^{k}}{\eta_{2}} \right\|_{F}^{2}.$$
(6)

The solution of \mathcal{V}^{k+1} is obtained by a classic iterative method (please refer to [6]) • Revision of \mathcal{P} :

$$\mathsf{P}_{(3)}^{k+1} = \mathsf{H}\mathsf{P}_{(3)}^{k},\tag{7}$$

Image: A matrix

where \mathbf{H} is obtained by

$$\mathbf{H} = rg\min_{\mathbf{H}} \left\| \mathbf{X}_{(3)}^{k+1} - \mathbf{HP}_{(3)}^{k}
ight\|_{F}^{2}$$

$$\begin{cases} \mathcal{X}^{k+1} = \arg\min_{\mathcal{X}} \frac{\eta_{1}}{2} \left\| \mathbf{X}_{(3)} \mathbf{B} - \mathbf{U}^{k} + \frac{\mathbf{G}_{1}^{k}}{\eta_{1}} \right\|_{F}^{2} \\ + \frac{\eta_{2}}{2} \left\| \mathcal{W}^{k} \triangle \mathcal{X} - \mathcal{W}^{k} \triangle \mathcal{P}^{k} - \mathcal{V}^{k} + \frac{\mathcal{G}_{2}^{k}}{\eta_{2}} \right\|_{F}^{2}, \\ \mathcal{V}^{k+1} = \arg\min_{\mathcal{V}} \lambda \left\| \mathcal{V} \right\|_{0} \\ + \frac{\eta_{2}}{2} \left\| \mathcal{W}^{k} \triangle \mathcal{X}^{k+1} - \mathcal{W}^{k} \triangle \mathcal{P}^{k} - \mathcal{V} + \frac{\mathcal{G}_{2}^{k}}{\eta_{2}} \right\|_{F}^{2}, \\ \mathbf{U}^{k+1} = \arg\min_{\mathbf{U}} \left\| \mathbf{U} \mathbf{S} - \mathbf{Y}_{(3)} \right\|_{F}^{2} + \frac{\eta_{1}}{2} \left\| \mathbf{X}_{(3)}^{k+1} \mathbf{B} - \mathbf{U} + \frac{\mathbf{G}_{1}^{k}}{\eta_{1}} \right\|_{F}^{2}, \\ \mathbf{G}_{1}^{k+1} = \mathbf{G}_{1}^{k} + \eta_{1} (\mathbf{X}_{(3)}^{k+1} \mathbf{B} - \mathbf{U}^{k+1}), \\ \mathcal{G}_{2}^{k+1} = \mathcal{G}_{2}^{k} + \eta_{2} (\mathcal{W}^{k} \triangle \mathcal{X}^{k+1} - \mathcal{W}^{k} \triangle \mathcal{P}^{k} - \mathcal{V}^{k+1}), \\ \mathbf{P}_{(3)}^{k+1} = \mathbf{HP}_{(3)}^{k}, \\ \mathcal{W}^{k+1} = \arg\min_{\mathcal{W}} \left\| \mathcal{W} \triangle \mathcal{T}^{k+1} - \mathcal{V}^{k+1} + \frac{\mathcal{G}_{2}^{k+1}}{\eta_{2}} \right\|_{F}^{2} + \frac{\rho}{2} \left\| \mathcal{W} - \mathcal{W}^{k} \right\|_{F}^{2}, \end{cases}$$

メロト メタト メヨト メヨト

Reduced-resolution Data

• Visual Comparison on Reduced-resolution Dataset

Figure: Top: Color images consisting of the 5th (R), 3rd (G), and 2nd (B) bands of the fused Tripoli dataset (reduced resolution), generated by compared methods. Bottom: The corresponding error images, enhanced by multiplying by a fixed number (i.e., 8).

• • • • • • • • • • •

• Quantitative Comparison on Reduced-resolution Dataset

Table: Quantitative results for 42 images from Tripoli dataset. (Bold: best; Underline: second best)

Method	PSNR ↑	SSIM ↑	SAM \downarrow	SCC ↑	$\textbf{ERGAS} \downarrow$	Q8 ↑
RBDSD [7]	31.38 ± 1.66	0.889 ± 0.07	4.335 ± 1.74	0.939 ± 0.06	3.376 ± 1.49	0.897 ± 0.11
Reg-FS [8]	30.90 ± 1.63	0.876 ± 0.07	4.345 ± 1.72	0.936 ± 0.06	3.541 ± 1.45	0.886 ± 0.11
TPNN [9]	29.30 ± 1.52	0.848 ± 0.07	5.094 ± 1.68	0.925 ± 0.05	4.197 ± 1.32	0.865 ± 0.11
CDIF [10]	$\underline{31.90\pm1.57}$	$\underline{0.890\pm0.07}$	$\underline{4.049\pm1.72}$	$\underline{0.946\pm0.05}$	$\underline{3.168\pm1.41}$	$\underline{0.904\pm0.10}$
IMBD [11]	30.13 ± 1.81	0.862 ± 0.06	4.714 ± 1.71	0.930 ± 0.06	3.845 ± 1.45	0.877 ± 0.09
Proposed	$\textbf{32.13} \pm \textbf{1.67}$	$\textbf{0.896}\pm\textbf{0.06}$	$\textbf{3.972}\pm\textbf{1.77}$	$\textbf{0.948}\pm\textbf{0.05}$	$\textbf{3.094}\pm\textbf{1.42}$	$\textbf{0.910}\pm\textbf{0.10}$

Image: A matrix

• Visual Comparison on Full-resolution Dataset

Figure: Color images consisting of the 5th (R), 3rd (G), and 2nd (B) bands of the Stockholm dataset (full resolution), generated by compared methods.

<ロト < 回 > < 回 > < 回 > < 回 >

• Quantitative Comparison on Full-resolution Dataset

Table: Quantitative results for 8 images from Stockholm dataset.	(Bold: best; Underline: second best)
--	--------------------------------------

Method	$D_\lambda\downarrow$	$D_s\downarrow$	QNR ↑	Runtime (s) \downarrow
RBDSD [7]	$\underline{0.026\pm0.009}$	0.042 ± 0.011	0.933 ± 0.015	$\textbf{0.113} \pm \textbf{0.071}$
Reg-FS [8]	0.059 ± 0.015	0.058 ± 0.016	0.887 ± 0.028	$\underline{0.114\pm0.008}$
TPNN [9]	0.033 ± 0.009	$\textbf{0.029}\pm\textbf{0.010}$	$\underline{0.939\pm0.012}$	2.469 ± 0.483
CDIF [10]	0.034 ± 0.004	0.060 ± 0.010	0.908 ± 0.012	55.31 ± 0.740
IMBD [11]	$\textbf{0.019}\pm\textbf{0.002}$	0.061 ± 0.013	0.922 ± 0.014	1.356 ± 0.014
Proposed	0.030 ± 0.007	$\underline{0.031\pm0.007}$	$\textbf{0.940} \pm \textbf{0.007}$	24.18 ± 0.062

- L. Alparone, A. Garzelli, and G. Vivone. "Intersensor statistical matching for pansharpening: Theoretical issues and practical solutions". In: *IEEE Trans. Geosci. Remote Sens.* 55.8 (2017), pp. 4682–4695.
- X. Fu et al. "A variational pan-sharpening with local gradient constraints". In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 2019, pp. 10265–10274.
- T. G. Kolda and B. W. Bader. "Tensor decompositions and applications". In: SIAM rev. 51.3 (2009), pp. 455–500.
- [4] S. Boyd et al. "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers". In: *Mach. Learn.* 3.1 (2011), pp. 1–122.
- [5] T. Xu et al. "An iterative regularization method based on tensor subspace representation for hyperspectral image super-resolution". In: IEEE Trans. Geosci. Remote Sens. 60 (2022), pp. 1–16.

< □ > < 同 > < 回 > < Ξ > < Ξ

Reference (cont.)

- [6] G. Yuan and B. Ghanem. "l₀TV: A Sparse Optimization Method for Impulse Noise Image Restoration". In: IEEE Trans. Pattern Anal. Mach. Intell. 41.2 (2019), pp. 352–364.
- G. Vivone. "Robust band-dependent spatial-detail approaches for panchromatic sharpening". In: *IEEE Trans. Geosci. Remote Sens.* 57.9 (2019), pp. 6421–6433.
- [8] G. Vivone, R. Restaino, and J. Chanussot. "Full scale regression-based injection coefficients for panchromatic sharpening". In: *IEEE Trans. Image Process.* 27.7 (2018), pp. 3418–3431.
- G. Scarpa, S. Vitale, and D. Cozzolino. "Target-adaptive CNN-based pansharpening". In: *IEEE Trans. Geosci. Remote Sens.* 56.9 (2018), pp. 5443–5457.
- [10] J.-L. Xiao et al. "A New Context-Aware Details Injection Fidelity with Adaptive Coefficients Estimation for Variational Pansharpening". In: IET Trans. Geosci. Remote Sens. 60 (2022), pp. 1–15.

Image: A math the second se

[11] H. Lu et al. "Intensity mixture and band-adaptive detail fusion for pansharpening". In: *Pattern Recognit.* 139 (2023), p. 109434.

Image: A matrix

My homepage

Team homepage

Thank you very much!

Jin-Liang Xiao (UESTC)

Adaptive Domain Fidelity

(日) (同) (日) (日)