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ABSTRACT

Pansharpening aims to obtain the high resolution multispec-
tral image (HRMS) using the panchromatic image (PAN) and
low spatial resolution multispectral image (LRMS). The sim-
ilarity between PAN and HRMS has shown powerful perfor-
mance for spatial feature extraction. The prevailing methods
usually describe the similarity on a fixed transformed domain.
However, such domain, e.g., gradient domain, usually lim-
its the preservation of spatial details and neglects flexibility.
To overcome these challenges, we propose an adaptive trans-
formed domain-based spatial fidelity to depict the similarity
accurately and flexibly. Based on the proposed spatial fidelity,
we build a novel variational pansharpening model that con-
sists of spectral and spatial fidelity terms. We design an al-
gorithm based on the alternating direction method of multi-
plier (ADMM) framework to solve the model. Experimental
results on reduced- and full-resolution data verify the effec-
tiveness of the proposed method.

Index Terms— Adaptive transformed domain, Spatial fi-
delity, Variational models, Pansharpening

1. INTRODUCTION

Remote sensing images have been widely applied in many
fields such as soil investigation and vegetation monitoring [1].
Due to inevitable hardware limitations, satellites usually cap-
ture a pair of the panchromatic image (PAN) and low spatial
resolution multispectral image (LRMS) simultaneously. Pan-
sharpening, which stands for panchromatic sharpening, refers
to fusing the above image pair to obtain the high resolution
multispectral image (HRMS).

The pansharpening methods can be classified into four
categories: component substitution (CS), multi-resolution
analysis (MRA), deep learning (DL), and variational opti-
mization (VO) methods. Classic CS and MRA approaches
usually lead to spectral or spatial distortions. DL-based meth-
ods achieve satisfactory results on this problem. However,
they require massive training data and often neglect inter-
pretability [2]. VO-based methods have recently attracted
much attention due to their powerful performance. These

(a) Ground-truth (b) Gradient (31.5 dB)(c) Adaptive (33.4 dB)

Fig. 1. The comparison among spatial features extracted from gra-
dient and adaptive domains (value: PSNR).

methods address the pansharpening problem by construct-
ing a variational model, typically incorporating spectral and
spatial fidelity terms, such as those proposed in [3, 4].

More recently, the spatial fidelity based on the trans-
formed domain has shown significant potential in leveraging
the similarity between PAN and HRMS. The similarity has
been characterized by projecting the residual of these two
images onto the transformed domain. The existing methods
usually choose the fixed transformed domain, e.g., gradient
domain [5]. However, such transformed domain-based fi-
delity is fixed and not adaptable to the data, which limits the
accuracy and flexibility for spatial features extraction.

To address these challenges, we propose a novel adap-
tive transformed domain-based spatial fidelity, which is adap-
tive to the inputs. In comparison to spatial fidelity based on
the gradient domain, our proposed approach demonstrates en-
hanced accuracy, as illustrated in Fig. 1. The proposed do-
main can be iteratively updated according to the characteris-
tics of the data. Leveraging the adaptive transformed domain-
based spatial fidelity term, we formulate a novel variational
pansharpening model and use alternating direction method of
multiplier (ADMM) algorithm to solve it. The flexibility of
the adopted transformed domain ensures that our method de-
picts the similarity between PAN and HRMS powerfully. Fur-
thermore, the revision of the PAN is also helpful for the en-
hancement of the similarity (refer to (5) and (6)). The main
contributions are summarized as follows:

• We propose a novel spatial fidelity term based on an
adaptive transformed domain, which can depict the
similarity between PAN and HRMS accurately.
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• Based on the proposed adaptive-domain fidelity, we es-
tablish a new variational pansharpening model and use
the ADMM algorithm to solve it. The proposed method
is effective for spatial features extraction and provides
flexibility with the data.

• Experiments on both reduced- and full-resolution
datasets verify the effectiveness of the proposed method.

2. PROPOSED VARIATIONAL PANSHARPENING
METHOD

2.1. Notations

In this paper, we denote tensors, matrices, vectors, and scalars
as calligraphic bold capital letters, bold capital letters, bold
lowercase letters, and lowercase letters, e.g., X , X, x, and
x, respectively. We use I to represent the identity matrix.
For A ∈ RH×W , A(i1, i2) is the element in A indexed by
(i1, i2), the Frobenius norm of A is defined by ∥A∥F =√∑

i1i2
A(i1, i2)2. For A ∈ RH×W×S , A(i) ∈ RH×W

denotes the i-th frontal slice of A, and A(3) ∈ RS×HW rep-
resents mode-3 unfolding of A. A = M△N means A(i) =
M(i)N(i), i = 1, 2, · · · , S. (·)T and (·)−1 represent the trans-
pose and inverse operation, respectively.

2.2. Proposed Variational Pansharpening Model

The proposed variational pansharpening model includes two
terms: the spectral fidelity term and the spatial fidelity term.
We will introduce each term separately below.

2.2.1. Spectral Fidelity

In general, LRMS Y ∈ Rh×w×S is considered as the spatial
degraded version of HRMS X ∈ RH×W×S , i.e., Y(3) =

X(3)BS. Therein, Y(3) ∈ RS×hw and X(3) ∈ RS×HW

are the mode-3 unfolding of Y and X , respectively; B ∈
RHW×HW and S ∈ RHW×hw denote the spatial blurring
matrix and down-sampling operator, respectively. Based on
this, the spectral fidelity term is formulated as follows,

fspec =
∥∥X(3)BS−Y(3)

∥∥2
F
, (1)

where ∥·∥F is Frobenius norm.

2.2.2. Proposed Spatial Fidelity

The PAN mainly contains spatial features, thus VO-based
methods usually extract spatial features from PAN. Since
HRMS and PAN are spatially similar, therefore, the residual
image of these two images should be sparse. Previous works
tend to describe the residual of the HRMS and histogram-
matched PAN [6]. However, there is a gap between the
histogram-matched PAN and the target HRMS. In this paper,

Table 1. Results of different norms for sparsity on data from Tripoli
dataset. (Bold: best; Underline: second best)

Norm for sparsity PSNR ↑ SSIM ↑
ℓ1-norm 33.41 0.920

ℓp-norm (0 < p < 1) 33.60 0.920
ℓ0-norm 33.76 0.923

we revise PAN iteratively to enhance the sparsity of the resid-
ual. Based on the revised PAN, we propose a novel spatial
fidelity term based on an adaptive transformed domain to
characterize this sparsity, i.e.,

fspa = ∥W△X −W△P∥0 , (2)

where P is the revised PAN that is estimated by the least
squares estimation (see (6)), ∥·∥0 is the ℓ0-norm, W ∈
Rr×H×S is an adaptive transformed tensor and satisfies
W(i)TW(i) = I, i = 1, · · · , S, and r is a fixed parameter of
the transform.

The proposed spatial fidelity describes the similarity be-
tween PAN and HRMS. Compared with the gradient trans-
formed domain, the adaptive domain is more flexible due to
its iterative updating (please refer to (5) and (6)). Since the
transform W satisfies W(i)TW(i) = I, i = 1, · · · , S, its in-
verse transform can be obtained conveniently, which avoid the
complex computation like other domains.

Besides, the choice of the norm is vital for the constraint
of sparsity. In previous works, the sparsity is usually con-
strained by ℓ1-norm and ℓp-norm (0 < p < 1) [7], which may
influence the accuracy of the sparse constraint. In our model,
we optimize ℓ0-norm to depict the sparsity. As shown in Ta-
ble 1, the ℓ0-norm in our model achieves the best performance
for the constraint of spatial details.

2.2.3. Proposed Variational Pansharpening Model

We integrate the spectral fidelity (1) (which involves extract-
ing spectral features from LRMS) and the spatial fidelity (2)
(which involves extracting spatial features from PAN) to for-
mulate a variational pansharpening model as follows:

min
X

∥∥X(3)BS−Y(3)

∥∥2
F
+ λ ∥W△X −W△P∥0 , (3)

where λ is a positive hyperparameter.

2.3. Solving Algorithm

We use the ADMM [14] to solve the proposed model (3).
By introducing auxiliary variables U = X(3)B and V =
W△X − W△P , the augmented Lagrangian function con-
cerning (3) is

L =
∥∥US−Y(3)

∥∥2
F
+

η1
2

∥∥∥∥X(3)B−U+
G1

η1

∥∥∥∥2
F

+
η2
2

∥∥∥∥W△X −W△P − V +
G2

η2

∥∥∥∥2
F

+ λ ∥V∥0 ,
(4)

1087

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on September 10,2024 at 15:45:59 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. Quantitative results for 42 images from Tripoli dataset. (Bold: best; Underline: second best)
Method PSNR ↑ SSIM ↑ SAM ↓ SCC ↑ ERGAS ↓ Q8 ↑ Runtime (s) ↓
C-BDSD [8] 29.21 ± 3.069 0.875 ± 0.078 5.238 ± 1.835 0.900 ± 0.087 4.658 ± 2.607 0.879 ± 0.112 0.749 ± 0.035
RBDSD [9] 31.38 ± 1.664 0.889 ± 0.078 4.335 ± 1.741 0.939 ± 0.063 3.376 ± 1.497 0.897 ± 0.115 0.054 ± 0.004
HMP [10] 30.95 ± 1.715 0.881 ± 0.071 4.372 ± 1.695 0.935 ± 0.064 5.351 ± 12.03 0.893 ± 0.106 0.139 ± 0.005
Reg-FS [6] 30.90 ± 1.633 0.876 ± 0.071 4.345 ± 1.722 0.936 ± 0.060 3.541 ± 1.452 0.886 ± 0.110 0.105 ± 0.005
PNN [11] 27.87 ± 1.250 0.864 ± 0.067 6.141 ± 1.445 0.921 ± 0.060 5.231 ± 0.102 0.870 ± 0.102 0.281 ± 0.014
TPNN [12] 29.30 ± 1.529 0.848 ± 0.071 5.094 ± 1.683 0.925 ± 0.059 4.197 ± 1.320 0.865 ± 0.117 2.988 ± 0.193
CDIF [5] 31.90 ± 1.579 0.890 ± 0.073 4.049 ± 1.728 0.946 ± 0.057 3.168 ± 1.411 0.904 ± 0.106 30.96 ± 0.815
IMBD [13] 30.13 ± 1.816 0.862 ± 0.068 4.714 ± 1.713 0.930 ± 0.060 3.845 ± 1.451 0.877 ± 0.099 0.259 ± 0.023
Proposed 32.13 ± 1.679 0.896 ± 0.068 3.972 ± 1.773 0.948 ± 0.056 3.094 ± 1.426 0.910 ± 0.100 15.50 ± 0.061

where η1 and η2 are parameters, G1 ∈ RS×HW and G2 ∈
Rr×W×S are Lagrangian multipliers. Thus, the problem (4)
is solved by alternately updating the following variables:



X k+1 = argminX
η1

2

∥∥∥X(3)B−Uk +
Gk

1

η1

∥∥∥2
F

+ η2

2

∥∥∥Wk△X −Wk△Pk − Vk +
Gk
2

η2

∥∥∥2
F
,

Vk+1 = argminV λ ∥V∥0
+ η2

2

∥∥∥Wk△X k+1 −Wk△Pk − V +
Gk
2

η2

∥∥∥2
F
,

Uk+1 = argminU
∥∥US−Y(3)

∥∥2
F

+ η1

2

∥∥∥Xk+1
(3) B−U+

Gk
1

η1

∥∥∥2
F
,

Gk+1
1 = Gk

1 + η1(X
k+1
(3) B−Uk+1),

Gk+1
2 = Gk

2 + η2(Wk△X k+1 −Wk△Pk − Vk+1),

Pk+1
(3) = HPk

(3),

Wk+1 = argminW

∥∥∥W△T k+1 − Vk+1 +
Gk+1
2

η2

∥∥∥2
F

+ ρ
2

∥∥W −Wk
∥∥2
F
,

(5)

where ρ is a parameter, T k+1 = X k+1 − Pk+1, and H ∈
RS×S is the revised operation that can be obtained by solving
the following quadratic minimization problem:

H = argmin
H

∥∥∥Xk+1
(3) −HPk

(3)

∥∥∥2
F
. (6)

Hence, H = (Xk+1
(3) (Pk

(3))
T )(Pk

(3)(P
k
(3))

T )−1. By this up-
date of Pk

(3), the histogram-matched PAN is revised.

Especially, the optimization of X k+1 and Uk+1 are two
quadratic minimization problems. The solution of Vk+1 is
obtained by a classic iterative method (please refer to [15]),
which introduces two hyperparameters α and β. Finally, we
update the transformed tensor Wk band-by-band, i.e.,

(Wk)(i) = E(i)F(i)T , i = 1, · · · , S, (7)

where E(i)Σ(i)(F(i))T is the singular value decomposition of

(Vk+1− Gk+1
2

η2
)(i)((Xk+1−Pk+1)(i))T +ρ(Wk)(i) (refer to

[16]). Overall, the algorithm has seven parameters, i.e., λ, η1,
η2, ρ, α, β, r, that need to be adjusted for better performance.

3. NUMERICAL EXPERIMENTS

In this section, we conduct a comparative analysis of the pro-
posed method against state-of-the-art methods on reduced-
and full-resolution data. Moreover, we make the ablation
study to verify the effectiveness of the proposed fidelity.
Benchmark and Platform. Compared methods include
C-BDSD [8], RBDSD [9]), HPM [10], Reg-FS [6], PNN
[11], TPNN [12], CDIF [5], and IMBD [13]. All the meth-
ods are conducted on PC with MATLAB (R2020a), Intel(R)
Core(TM) i9-12900K 3.20 GHz, RAM 64 GB, and NVIDIA
GeForce GTX 1650. It is noteworthy that all DL methods
utilize the pretrained models.
Datasets and Quantitative Metrics. We choose the Tripoli
dataset (size of the PAN: 256×256, source: WorldView-3
satellite) and Stockholm dataset (size of the PAN: 400×400,
source: WorldView-2 satellite) for reduced- and full-resolution
comparisons, respectively. We apply the peak signal-to-noise
ratio (PSNR), the structural similarity index (SSIM) [17], the
spectral angle mapper (SAM) [18], the spatial correlation
coefficient (SCC) [19], the erreur relative global adimension-
nelle de synthèse (ERGAS) [20], Q8 [21] metric for reduced-
resolution data. Besides, the quality with no reference (QNR)
[22], which consists of a spectral quality index Dλ and a spa-
tial quality index Ds, is employed for full-resolution data. We
also compared the computational efficiency of the methods
by measuring the runtime in seconds.

3.1. Experimental Results on Reduced-Resolution Data

Quantitative Comparison. The results on the 42 images
from Tripoli dataset are presented in Table 2. As depicted in
this table, the proposed method achieves better quality results
than other methods. The runtime of the proposed method is
less than that of the CDIF. Note that the compared method,
i.e., CDIF, is a VO-based method. The spatial fidelity in the
method is different from the one in our proposed method. The
quantitative results indicate the superiority of the proposed
spatial fidelity based on the adaptive domain.
Visual Comparison. To offer a comprehensive evaluation of
the pansharpening results among the methods, we extend the
quality assessment to visual perception. Color images of the
reconstructed Tripoli dataset along with their error images are
shown in Fig. 2. The representative regions in these images
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(a) C-BDSD [8] (b) RBDSD [9] (c) HPM [10] (d) Reg-FS [6] (e) PNN [11] (f) TPNN [12] (g) CDIF [5] (h) IMBD [13] (i) Proposed (j) GT

Fig. 2. Top: Color images consisting of the 5th (R), 3rd (G), and 2nd (B) bands of the fused Tripoli dataset (reduced resolution), generated
by (a) C-BDSD, (b) RBDSD, (c) HPM, (d) Reg-FS, (e) PNN, (f) TPNN, (g) CDIF, (h) IMBD, (i) proposed, and (j) GT. Bottom: The
corresponding error images, enhanced by multiplying by a fixed number (i.e., 8).

(a) C-BDSD [8] (b) RBDSD [9] (c) HPM [10] (d) Reg-FS [6] (e) PNN [11] (f) TPNN [12] (g) CDIF [5] (h) IMBD [13] (i) Proposed (j) PAN

Fig. 3. Color images consisting of the 5th (R), 3rd (G), and 2nd (B) bands of the Stockholm dataset (full resolution), generated by (a)
C-BDSD, (b) RBDSD, (c) HPM, (d) Reg-FS, (e) PNN, (f) TPNN, (g) CDIF, (h) IMBD, (i) Proposed, and (j) PAN.

Table 3. Quantitative results for 8 images from Stockholm dataset.
(Bold: best; Underline: second best)

Method Dλ ↓ Ds ↓ QNR ↑ Runtime (s) ↓
C-BDSD [8] 0.119 ± 0.035 0.203 ± 0.037 0.702 ± 0.050 0.938 ± 0.129
RBDSD [9] 0.026 ± 0.009 0.042 ± 0.011 0.933 ± 0.015 0.113 ± 0.071
HMP [10] 0.050 ± 0.015 0.047 ± 0.016 0.905 ± 0.028 0.162 ± 0.014
Reg-FS [6] 0.059 ± 0.015 0.058 ± 0.016 0.887 ± 0.028 0.114 ± 0.008
PNN [11] 0.054 ± 0.005 0.037 ± 0.008 0.911 ± 0.009 0.453 ± 0.682
TPNN [12] 0.033 ± 0.009 0.029 ± 0.010 0.939 ± 0.012 2.469 ± 0.483
CDIF [5] 0.034 ± 0.004 0.060 ± 0.010 0.908 ± 0.012 55.31 ± 0.740
IMBD [13] 0.019 ± 0.002 0.061 ± 0.013 0.922 ± 0.014 1.356 ± 0.014
Proposed 0.030 ± 0.007 0.031 ± 0.007 0.940 ± 0.007 24.18 ± 0.062

are highlighted by red boxes. Among all the methods, the
proposed one achieves the least error, which demonstrates the
advantages of the proposed method on the problem.

3.2. Experimental Results on Full-Resolution Data

Quantitative Comparison. To further demonstrate the effec-
tiveness of the proposed method, we execute all methods on
the Stockholm full-resolution dataset. The quantitative results
on the 8 images from the Stockholm full-resolution dataset
are presented in Table 3. The proposed method has the best
value for QNR, and its runtime is less than the CDIF.
Visual Comparison. For visual performance, we present an
image of the reconstructed Stockholm data shown in Fig. 3.
The representative regions in these images are highlighted by
red boxes. From this figure, we observe that the proposed
method is closest to the PAN, demonstrating its effectiveness
on full-resolution pansharpening results.

3.3. Ablation Study

The proposed final model (3) consists of the spectral fi-
delity (1) and the proposed spatial fidelity (2). We conduct

Table 4. Ablation experiment results on data from Tripoli dataset.
(Bold: best; Underline: second best)

Spectral Fidelity Spatial Fidelity PSNR ↑ SSIM ↑
✓ 27.67 0.650

✓ 30.23 0.890
✓ ✓ 33.74 0.923

further experiments on an image from the Tripoli dataset
to test the performance of these two fidelity terms. We use
PSNR and SSIM to measure accuracy. The results are pre-
sented in Table 4. From this table, the proposed model with
both spectral and spatial fidelities achieves the best results.

4. CONCLUSION

In this paper, we proposed an adaptive domain-based spa-
tial fidelity for variational pansharpening. We proposed a
novel spatial fidelity based on the adaptive transformed do-
main, which can better depict the similarity between PAN and
HRMS compared to the gradient domain. Based on the pro-
posed spatial fidelity, we designed a variational pansharpen-
ing model. We used the ADMM-based algorithm to solve the
model. Experiments on reduced- and full-resolution datasets
demonstrated the effectiveness of the proposed method com-
pared with current state-of-the-art pansharpening methods.
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