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Hyperspectral unmixing (HU): Signal model

Courtesy to [Wing-Kin Ma et al. 2014]

Linear Mixture Model (LMM):

yi = Axi + ei , i = 1, . . . , k .

where

- A = [a1, . . . , an] ∈ Rm×n, ai ∈ Rm is an endmember signature vector;

- yi ∈ Rm is the measured hyperspectral vector at pixel i ;

- xi ∈ Rn is the abundance vector at pixel i ; ei is the noise.
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Let Y = [y1, . . . , yk ], X = [x1, . . . , xk ], E = [e1, . . . , ek ]. Then

Y = AX + E .

Goal: recover X from Y with knowing A.

Assumptions:

- ANC: abundance nonnegative constraint: X ≥ 0, i.e., Xi,j ≥ 0.

- ASC: abundance sum-to-one constraint:
∑m

i=1 Xi,j = 1, ∀j .
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Sparse and low-rank regression

Sparse regression for HU.

Idea: the number of endmembers participating in a mixed pixel is usually
very small compared with the (ever-growing) dimensionality (and availability)
of spectral libraries.

The sparse unmixing model [Iordache-Bioucas-Plaza2011] is:

min
0≤X∈Rm×n

1

2
∥Y − AX∥2F + λ ∥X∥1

solve the model by a fast custom-derived solver (e.g., alternating direction
method of multipliers (ADMM))

SUnSAL: the sparse unmixing via variable splitting and augmented
Lagrangian
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Collaborative sparse regression.

Idea: use a smallest subset of spectral library to represent all mixed pixels in
a hyperspectral image.

The collaborative sparse model [Iordache-Bioucas-Plaza2014] is:

min
0≤X∈Rm×n

1

2
∥Y − AX∥2F + λ ∥X∥2,1

where ∥X∥2,1 =
∑m

i=1

∥∥x [i ]∥∥
2
, and x [i ] is the i-th row of X .

- solve it by ADMM.

- the collaborative SUnSAL (CLSUnSAL) algorithm.
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SUnSAL: sparsity on each column vector xj , i.e., X is sparse.

CLSUnSAL: structural sparsity on X , i.e., X is row-sparse.

- collaborative sparse on a sliding window [Chen-Nasrabadi-Tran2011],
[Qu-Nasrabadi-Tran2014]

- collaborative sparse with general segments (super-pixels)
[Huang-Zhang-Pižurica2017], [Wang-Zhong-Zhang-Xu2017]

SUnSAL-TV: the total variation (TV) regularization is included into the
classical sparse regression formulation [Iordache-Bioucas-Plaza2012]

min
X≥0

1

2
∥Y − AX∥2F + λ ∥X∥1 + λTVTV (X ),

where λ ≥ 0 and λTV ≥ 0 are regularized parameters.
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Sparse and low-rank unmixing.

ADSpLRU: The spatial correlation among pixels in an HSI translates into a
low-rank property of the abundance matrix
[Giampouras-Themelis-Rontogiannis-Koutroumbas2016].

The unmixing model is

min
0≤X∈Rm×K

1

2
∥Y − AX∥2F + λ ∥X∥a,1 + τ∥X∥f ,∗

where ∥X∥a,1 =
∑

|ai,jXi,j |, ∥X∥f ,∗ =
∑rank(X )

i=1 f (σi )σi is the weighted
nuclear norm of X , and σi is the i-th singular value of X .
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JSpBLRU: Partition

X = [X1, · · · ,Xs ] ∈ Rm×n,

where Xj ∈ Rm×dj , for j = 1, . . . , s,
∑s

j=1 dj = n, and block number s is a
positive integer for 1 ≤ s ≤ n. Each Xj is assumed joint-sparse
[Huang-Huang-Deng-Zhao2019].

Consider the joint-sparse-blocks and low-rank hyperspectral unmixing model

min
0≤X∈Rm×K

1

2
∥Y − AX∥2F + λ

s∑
j=1

∥Xj∥wj ,2,1
+ τ∥X∥f ,∗

where the weighted ℓ2,1 norm, defined as ∥Xj∥wj ,2,1
=

∑m
i=1 wi,j

∥∥∥X [i ]
j

∥∥∥
2
, is

used to enhance sparsity along rows in each block in X , X
[i ]
j is the i-th row of

the j-th block of X , wj = [w1,j , . . . ,wm,j ]
T is a nonnegative vector.

BiJSpLRU: Consider the mode-3 matricization of Y along the vertical and
horizontal directions simultaneously. [Huang-Di-Wang-Lin-Huang2021]
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Endmember distinguished methods

Idea: divide the endmembers into two groups.

“Low-rank” endmembers: they participate in the mixing process and are
called active. The corresponding abundances are gathered in X1 ∈ Rn1×k and
we will exploit more spatial information of abundance maps (although
sparsity is also important for them).

“Sparse” endmembers: they are inactive, resulting in the sparsity of X . The
corresponding abundances are gathered in X2 ∈ Rn2×k .

Divide the abundance matrix X ∈ Rn×k into two row blocks according to the
activity. That says

PX =

[
X1

X2

]
,

where P = [PT
1 ,PT

2 ]T ∈ Rn×n is a permutation matrix used to reorder the
rows of the abundance matrix, P1X = X1 and P2X = X2 are composed of
rows corresponding to n1 low-rank endmembers and n2 sparse endmembers
with n1 + n2 = n, respectively.
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Endmember distinguished methods

How to distinguish the low-rank and sparse endmembers?

The key is to determine the permutation matrix P.

Step 1. Sort the endmembers in descending order by ∥X (i , :)∥2, where X (i , :)
denotes the i-th row of X for i = 1, 2, ..., n.

Step 2. Use ℓ2-norm to measure activity. We find the set S of the top K
endmembers satisfying that

∑
i∈S

∥X (i , :)∥2 ≥ ρ

n∑
i=1

∥X (i , :)∥2 , (1)

where ρ ∈ [0, 1] is a thresholding parameter.

Step 3. The endmembers in set S will be considered as low-rank endmembers
and the rest will be sparse ones.
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Weighted nuclear norm regularization

We apply the weighted nuclear norm regularization on the abundance map of
each low-rank endmember, instead of applying on X1 directly, which can be
described as

n1∑
i=1

∥Re(X1(i , :))∥g ,∗

where n1 is the number of low-rank endmembers, Re(·) is a function that
reshapes the row vector of the i-th low-rank endmember into abundance map.

Here the weighted nuclear norm is defined as

∥T∥g ,∗ =
∑
i

g(σi )σi ,

where σi is the i-th singular value of the matrix T and g is a weighting
function for singular values defined as g(σ) = 1/(σ + ε), and ε is a small
number to avoid singularities [Gu-Xie-Meng-Zuo-Feng-Zhang2017].
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Weighted sparse regularization

We consider the sparse property for the abundance matrix X .

In particular, we introduce a weight factor B ∈ Rn×k into the ℓ1-norm of X .

The weight factor B consists of a spectral factor B1 ∈ Rn×k and a spatial
factor B2 ∈ Rn×k to make full use of spectral and spatial information.
[Zhang-Li-Li-Deng-Plaza2018]

The weighted ℓ1-norm regularization on X is as follows

∥B ⊙ X∥1 , B = sqrt(B1B2), (2)

where the operator ⊙ denotes the Hadamard product and sqrt(·) is the
elementwise square root function.

Jin-Liang Xiao (UESTC) EDLSpRU July 8, 2024 13 / 32



Weighted sparse regularization

The spectral factor B1 is used to enhance the sparsity of the endmembers in
the spectral library, which is defined as

B1 = diag

[
k

∥X (1, :)∥1 + ε
, ...,

k

∥X (n, :)∥1 + ε

]
.

The spatial factor B2 utilizes the spatial correlation between the pixel and its
neighbors to promoting sparsity, which can be described as

B2(i , j) =

∑
k∈N (j) wk∑

k∈N (j) wkX (i , k) + ε
,

where N (j) is a collection of the column indices of the j-th pixel’s neighbors
(including itself) in the abundance matrix and wk is corresponding weight of
neighbors.
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Proposed model

In conclusion, our proposed unmixing model is given as

min
X

1

2
∥Y − AX∥2F + λ

n1∑
i=1

∥Re(X1(i , :))∥g ,∗ + τ ∥B ⊙ X∥1

s.t. X ≥ 0, PX =

[
X1

X2

]
,

To solve this model under the ADMM framework. We transform this model
into a constrained problem as

min
X

1

2
∥Y − AX∥2F +λ

n1∑
i=1

∥Re(V1(i , :))∥g ,∗ + τ ∥B ⊙ V2∥1 + ιR+ (V3)

s.t. P1X = V1, X = V2, X = V3,

where V1,V2,V3 are auxiliary varaibles, ιR+(x) is the indicator function, λ
and τ are nonnegative regularization parameters.
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Proposed algorithm

Let Ω1 ∈ Rn1×k , Ω2 ∈ Rn×k , and Ω3 ∈ Rn×k are Lagrange multipliers.

Define G = [PT
1 , I , I ]T , E = diag(−I ,−I ,−I ), V = [V T

1 ,V T
2 ,V T

3 ]T ,
Ω = [ΩT

1 ,Ω
T
2 ,Ω

T
3 ]

T , then the constraints become GX + EV = 0.

Define

Lµ(X ,V ; Ω) =
1

2
∥Y − AX∥2F + λ

n1∑
i=1

∥Re(V1(i , :))∥g ,∗

+ τ ∥B ⊙ V2∥1 + ιR+ (V3) +
µ

2
∥GX + EV − Ω∥2F ,

where µ > 0 is a penalty parameter.

The ADMM framework is derived
X k+1 = argmin

X
Lµ(X ,V k ; Ωk),

V k+1 = argmin
V

Lµ(X
k+1,V ; Ωk),

Ωk+1 = Ωk − (GX k+1 + EΩk+1).
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Proposed algorithm

To make the notations clearly, we introduce the soft-thresholding (SHR)
operator and singular value thresholding (SVT) operator.

Let X = UΣV T be the singular value decomposition of X and recall the
weighting function. Define

SHRg ,α(x) = sign(x)max (0, x − αg(x)) ,

SVTg ,β(X ) = USHRg ,β (Σ)V
T .

Now we can propose the final algorithm named as Endmember Distinguished
Low-rank and Sparse Representation Unmixing (EDLSpRU).
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Proposed algorithm

Algorithm 1: EDLSpRU

Input: Y and A.
Selected parameters: λ, τ , µ and maximum iterations
Initialization: X 0, V 0, Ω0, and t = 1
Repeat:

X t = (ATA+ 2µI + PT
1 P1)

−1[ATY + µPT
1 (V t−1

1 +Ωt−1
1 )

+µ(V t−1
2 +Ωt−1

2 + V t−1
3 +Ωt−1

3 )]
for i = 1, 2, ..., n1
Re(V t

1 (i , :)) = SVTg ,λµ
(Re(P1X

t(i , :)− Ωt−1
1 (i , :)))

end for
V t
2 = SHRB, τµ

(X t − Ωt−1
2 ) with B calculated by (2)

V t
3 = max(X t − Ωt−1

3 , 0)
Ωt

1 = Ωt−1
1 − P1X

t + V t
1

Ωt
2 = Ωt−1

2 − X t + V t
2

Ωt
3 = Ωt−1

3 − X t + V t
3

Update P1 and n1 according to the set S satisfying (1)
until some stopping criterion is satisfied.

Output: X̂ = X t
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Experiments on simulated data

Experiment setting.
We will compare EDLSpRU with three state-of-the-art algorithms: ADSpLRU, JSpBLRU and BiJSpLRU.

RMSE and the signal-to-reconstruction error (SRE) are used to evaluate the performance of unmixing
results. They are defined by, respectively,

RMSE =

√√√√ 1

nk

k∑
i=1

∥x̂i − xi∥2
2, SRE (dB) = 10 log10

(
1
k

∑k
i=1 ∥x̂i∥

2
2

1
k

∑k
i=1 ∥x̂i − xi∥2

2

)
,

where k is the number of pixels, n is the number of endmembers, and x̂i and xi are estimated and exact
abundance vectors of the i-th pixel, respectively.

We set the maximum number of iterations to 500.

We select optimal regularization parameters for EDLSpRU as follows:

λ, τ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5},

and select µ ∈ {0.1, 0.5, 1, 5}. In addition, we set ρ = 0.9 in all experiments. All possible combinations
are considered and the optimal parameters are chosen to get maximum SREs.

Our test were done by using MATLAB R2021a on a laptop with 2.30 GHz Intel Core i7 and 12 GB
memory.
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Experiments on simulated data

Data Cube 1 (DC1): The first data cube contains 75× 75 pixels with 224 spectral bands.
The spectral dictionary A1 ∈ R224×240 is extracted from the U.S. Geological Survey
(USGS). Five endmembers are randomly chosen from A1 according to LMM. Finally, the
generated data cube is contaminated by white Gaussian i.i.d. noise with signal-to-noise
ratio (SNR) of 20, 30, and 40dB respectively.

Data Cube 2 (DC2): This data cube contains 100× 100 pixels with 99 spectral bands and
the spectral dictionary A2 ∈ R99×120 is from the National Aeronautics and Space
Administration Johnson Space Center Spacecraft Materials Spectral Database. Nine
endmember signatures are randomly chosen from A2 and the corresponding abundance
maps are used to generate the true data cube, which is also contaminated by Gaussian
noise with the same SNR values adopted for DC1.
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Table: SRE(dB) and RMSE by different algorithms.

Data Cube 1 (DC1)

Algorithm
SNR = 20 dB SNR = 30 dB SNR = 40 dB
RMSE SRE RMSE SRE RMSE SRE

ADSpLRU 0.0168 6.24 0.0079 12.82 0.0014 27.70
JSpBLRU 0.0117 9.42 0.0059 15.40 0.0008 32.50
BiJSpLRU 0.0115 9.53 0.0067 14.30 0.0008 32.82
EDLSpRU 0.0108 10.13 0.0016 26.55 0.0005 36.70

Data Cube 2 (DC2)

Algorithm
SNR = 20 dB SNR = 30 dB SNR = 40 dB
RMSE SRE RMSE SRE RMSE SRE

ADSpLRU 0.0375 5.75 0.0114 16.10 0.0034 26.66
JSpBLRU 0.0230 9.98 0.0087 18.42 0.0027 28.44
BiJSpLRU 0.0180 12.12 0.0069 20.48 0.0024 29.55
EDLSpRU 0.0155 13.39 0.0058 22.01 0.0029 28.02
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Figure: True and estimated abundance maps for endmembers #1, #3 and #5 by different unmixing algorithms
for DC1 with SNR = 30 dB. From left to right: True, ADSpLRU, JSpBLRU, BiJSpLRU, and EDLSpRU.
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Figure: True and estimated abundance maps for endmembers #2 , #3 and #9 by different unmixing algorithms
for DC2 with SNR = 30 dB. From left to right: True, ADSpLRU, JSpBLRU, BiJSpLRU, and EDLSpRU.
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Figure: Comparison of each endmember’s abundance of the ground truth and the estimations by EDLSpRU for
DC2 with SNR = 30 dB.
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Figure: Plots of SRE (dB) against iterations by EDLSpRU for DC2.

Jin-Liang Xiao (UESTC) EDLSpRU July 8, 2024 25 / 32



Experiments on real data

Figure: USGS map showing the location of different minerals in the Cuprite mining district in Nevada.
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Figure: Estimated abundance maps for minerals buddington, muscovite, and chalcedony by different unmixing
algorithms. From left to right: Tetracorder, ADSpLRU, JSpBLRU, BiJSpLRU, and EDLSpRU.
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Conclusion and future work

We have proposed a new unmixing model which can distinguish endmembers
into low-rank ones and sparse ones so that different regularizations can be
applied to each type of them. The model aims at considering both low-rank
and sparse characteristics for low-rank endmembers, while only considering
sparsity for sparse ones.

We solve our model under the ADMM framework and propose a new
algorithm named as EDLSpRU. The experiment results for both simulated
and real-data demonstrate the efficacy of the proposed unmixing structure.

In the future, we will extend the proposed endmember distinguished structure
to blind unmixing or its tensor edition for HSI processing.
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Thank you very much!
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