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Abstract. Recently, minimizing the tensor tubal rank based on the tensor
singular value decomposition (t-SVD) has attracted significant attention in

the tensor completion task. The widely-used solutions of tensor-tubal-rank
minimization rely upon various convex and nonconvex surrogates of the tensor
rank. However, these tensor rank surrogates usually lead to inaccurate descrip-

tions of the tensor rank. To mitigate the limitation, we propose an innovative

`0 minimization framework with guaranteed convergence to provide a novel
paradigm for minimization of the tensor rank. To demonstrate the effectiveness

of our framework, we develop a new tensor completion model employing a
tensor adaptive sparsity-deduced rank (TASR). Subsequently, we formulate
an algorithm rooted in the proposed `0 minimization framework to address

this model effectively. Experimental results on multi-dimensional image data
demonstrate that our method is superior to several state-of-the-art approaches.

The code is accessible at https://github.com/Jin-liangXiao/L0-TC.

1. Introduction. Multi-dimensional data, such as multispectral image (MSI), hy-
perspectral image (HSI), and video, can be effectively represented as tensors that are
fundamental units in many fields, e.g., image processing [27,40,43,44,47], pattern
recognition [30,56,65], and machine learning [17,24,41,55]. The tensor rank mini-
mization problem focuses on recovering the underlying tensor from the incomplete
observation [53], which is generally expressed as follows,

min
X

rank(X ), s.t. P(X ) = B, (1)

where B is the incomplete tensor, X is the underlying tensor, and P(·) is a linear
projector. The choice of P relies on the specific application [39,64,67].

In contrast to matrix rank, the tensor rank (i.e., rank(X ) in (1)) is not uniquely
defined [15]. Generally, the tensor rank is related to the corresponding tensor
decomposition [42,63]. For example, the CANDECOM/PARAFAC (CP) rank [68]
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Figure 1. The diagram of low rank tensor completion from the observed
tensor to the underlying tensor. The histograms below are the singu-
lar value distributions of the incomplete tensor and underlying tensor,
respectively (the horizontal axis and vertical axis are the number and
value of singular values). It is clear that the target underlying tensor
with low-tensor-rank property tends to have the sparse distribution of
tensor singular values. (data: MSI Toy, sampling rate: 20%)

is defined by the minimal number of rank-one tensors to approximate the target
tensor since CP decomposition represents the tensor as the sum of rank-one tensors.
The Tucker rank [58], is a vector wherein each element corresponds to the rank of
the unfolding matrix of the tensor along each mode. This definition is in strong
alignment with the format of Tucker decomposition. However, the calculation of the
CP rank is NP-hard, and the Tucker rank inevitably destroys the internal structure
of the tensor [49,50].

Currently, tensor tubal rank [22] that is based on the tensor singular value
decomposition (t-SVD) [13, 14] is developed to explore the low-rank structure of
tensors in the frequency domain, which has drawn attention in many practical
applications [34,54]. Frequency transformations, e.g., fast Fourier transformation
(FFT) and discrete cosine transformation (DCT), are involved in t-SVD, and the
operations can separate the low-frequency and high-frequency information while
maintaining the low-rank structure [28]. Also, the t-SVD can be extended to other
generalized linear transformations to obtain the low-rank structure. However, the
minimization of tensor tubal rank is difficult, and directly solving the tensor rank
minimization problem as (1) is usually NP-hard [16]. Lu et al. [21] demonstrate
that the low tubal rank property of tensor can be well constrained by low average
rank and minimize it with a new tensor nuclear norm. Besides, various convex and
nonconvex tensor rank surrogates are proposed to approximate the tensor average
rank. As described in Figure 1 and the theoretical analysis of Lemma 3.1 and
Remark 3.2, the target underlying tensor with low-tensor-rank property tends to
have the sparse distribution of tensor singular values. Due to the strong correlation
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between t-SVD-based tensor ranks (e.g. tensor tubal rank and average rank) and
tensor singular values (please refer to Lemma 3.1 and Remark 3.2), these tensor
rank surrogates shrink singular values to constrain the low-tensor-rank property,
which has applied in the tensor completion as shown in Figure 2.

In real applications, the minimization of tensor rank is usually converted into
its proximal problem [8, 26]. Specifically, tensor nuclear norm (TNN) [22, 66] was
proposed to minimize the tensor average rank in the proximal problem as follows,

min
X
‖X‖∗ +

1

2
‖X − Y‖2F , (2)

where Y is known, and ‖X‖∗ means the TNN of X , which is defined by the sum of
tensor singular values of X . Nevertheless, TNN equally constrains each singular value,
serving as `1-norm of singular values, which usually leads to biased solution [62]. To
overcome the drawback, several nonconvex rank surrogates [1,9,33] were subsequently
given to alleviate this dilemma [12], which can be denoted as follows,

min
X

Ψ(X ) +
1

2
‖X − Y‖2F , (3)

where Ψ(X ) is the tensor rank surrogate of X to approximate the tensor average
rank. For example, Jiang et al. [9] proposed the partial sum of singular values to
shrink the smaller singular values. Wang et al. [33] proposed a generalized nonconvex
method to approach the tensor tubal rank and average rank. These nonconvex
tensor rank surrogates can alleviate the biased solution of TNN [2].

Nonetheless, rank surrogates are actually designed by reducing the shrinkage of
the larger singular values, which often suffer from limited performance in applications.
As shown in Figure 2, these tensor rank surrogates cannot describe the low-rank
constraint property of the rank function well, which usually leads to the over-
penalization of singular values [33]. Thus, it is critical to search for a more accurate
constraint of tensor singular values. Virtually, the tensor average rank is equal to
the `0-norm of tensor singular values (see Lemma 3.1), which means there exists
a strong connection between the low-rank property of tensor and the sparsity of
tensor singular values. Motivated by the above analysis, we tend to develop a novel
approach to minimize the tensor tubal rank by describing the sparsity of tensor
singular values. Besides, it is also critical to design an effective algorithm to solve
it [4, 19,57,59].

In this paper, we propose a novel `0 minimization framework to minimize the
tensor tubal rank. This framework reformulates this problem to a biconvex Mathe-
matical Program with Equilibrium Constraints (MPEC), which provides a powerful
constraint for the sparsity of tensor singular values compared with existing tensor
rank surrogates. Recently, several transformed low-rank presentations based on
tensor tubal rank, e.g., [10,31,45], have gained notable attention. These presentations
can also be well described by corresponding revised algorithms in this framework. In
addition, for the specific tensor completion task, we design a new completion model
according to the sparse constraint characteristics of the `0 minimization framework.
Multi-dimensional image data usually have powerful similarities in the distribution
of singular values, which can be utilized to enhance the correlation between the
low-rank property of tensor and the sparsity of singular values. The new model
introduces an adaptive orthogonal transformation that makes the singular values of
the low-rank tensor more sparse, and it can also reduce computational complexity
(please refer to Figure 4 and Sect. 4.4). Then, we develop an algorithm based on the
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-norm
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Schatten p-norm

(36.43 dB)
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Figure 2. Constraint comparison of different approaches, i.e., TNN (`1-
norm) [22], Schatten p-norm [25], Logarithmic norm [1], and the proposed
approach, for singular values and their experimental performance. We
plot the constraint curves of different approaches for singular values and
apply them to the tensor completion task. Their results are assessed
by the index peak signal-to-noise ratio (PSNR) [37] (data: MSI Toy,
sampling rate: 20%)

`0 minimization framework to solve it. Numerical experiments on MSI, HSI, and
video data demonstrate the effectiveness of the completion model, which also verifies
the practical potential of the `0 minimization framework.

To sum them up, our contributions are listed as follows,

• We give a novel `0 minimization framework of tensor tubal rank by constraining
the sparsity of tensor singular values, which can be also applicable to the
minimization of other tensor ranks related to sparsity.

• For multi-dimensional image completion application, we design a new model
based on the `0 minimization framework and develop an effective algorithm
to solve it. This model fully explores the sparsity of tensor singular values
and the low-rank property of tensor and utilizes the powerful sparse constraint
ability of the proposed framework.

• Experiments display that the new completion model achieves state-of-the-
art performance on multi-dimensional image data, which also verified the
effectiveness of the `0 minimization framework.

2. Notations amd preliminaries.

2.1. Notations. In this paper, tensors, matrices, and vectors are represented by
calligraphic letters, uppercase bold letters, and lowercase bold letters, e.g., A, A,
and a, respectively. Particularly, I means the identity matrix. The Matlab notation
A(:, :, i) or A(i) is the i-th frontal slice of A. A(i, j, :) denotes the (i, j)-th tube of
A. A(3) = unfold3(A) means the unfolding matrix of tensor A along the third
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Figure 3. The graphical representation of t-SVD for tensor A.

dimension, and fold3 is the inverse operator of unfold3. (·)T denotes the matrix
transpose operation. C = A4B means C(i) = A(i)B(i) [23]. Let L represent an
invertible linear transformation, and L means its corresponding linear transform
matrix. For the invertible linear transform matrix L, A = A×3 L = fold3(LA(3)).
means A on the transform L domain. The invertible transform matrix L usually
has the following assumption:

LLT = LTL = γI, (4)

where γ is a positive fixed constant. Besides, the block circulant matrix bcirc(A) of
A is defined as

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 . (5)

2.2. Preliminaries. Before the main results, we briefly introduce some definitions
about transformation-based t-product [14] and t-SVD [13].

Definition 2.1 (T-product [13,14]). Denote L as an invertible linear transformation
that satisfies (4). The transformation L based t-product of two tensors A ∈ Rn1×l×n3

and B ∈ Rl×n2×n3 is defined as

C = A ∗L B = (A4B)×3 L−1, (6)

where A = A ×3 L, B = B ×3 L, C ∈ Rn1×n2×n3 , L ∈ Rn3×n3 is the transform
matrix, and L−1 is the inverse transform matrix of L.

Definition 2.2 (Tensor transpose [14]). Denote L as an invertible linear transfor-
mation that satisfies (4). The transpose of tensor A ∈ Rn1×n2×n3 is represented as

AH that satisfies AH
(i)

= (A
(i)

)T , i = 1, · · · , n3.

Definition 2.3 (Identity tensor [14]). Denote L as an invertible linear transforma-

tion that satisfies (4). The tensor I ∈ Rn×n×n3 is an identity tensor if satisfies A
(i)

is an identity matrix, i = 1, · · · , n3.

Definition 2.4 (Orthogonal Tensor [14]). Denote L as an invertible linear transfor-
mation that satisfies (4). Tensor A ∈ Rn×n×n3 is orthogonal under L if it satisfies
A ∗L AH = AH ∗L A = I.
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Definition 2.5 (T-SVD [13,22]). Denote L as an invertible linear transformation
that satisfies (4). Any tensor A ∈ Rn1×n2×n3 can be represented as

A = U ∗L S ∗L VH , (7)

where U ∈ Rn1×n1×n3 , VH ∈ Rn2×n2×n3 are orthogonal tensors, S ∈ Rn1×n2×n3

consists of tensor singular values, and each frontal slice of S is a diagonal matrix.

The t-SVD of A can be graphically denoted as Figure 3.

Definition 2.6 (Tensor tubal rank [22]). Denote U ∗L S ∗L VH as the t-SVD of
A ∈ Rn1×n2×n3 under the invertible linear transformation L that satisfies (4). The
tubal rank of A is defined as the number of nonzero singular tubes of S, which can
be represented as follows,

rankt(A) := ]{i|S(i, i, :) 6= 0}. (8)

Definition 2.7 (Tensor average rank [21]). For tensor A ∈ Rn1×n2×n3 , the tensor
average rank of A is represented as follows,

ranka(A) :=
1

n3
rank(bcirc(A)). (9)

3. Main results. There exists the close relationship between tensor tubal rank
and tensor average rank as follows [21],

ranka(A) ≤ rankt(A). (10)

Thus, the tensor with low tubal rank always has low average rank. Besides, the
minimization of tensor tubal rank can be approximated by minimizing the tensor
average rank in applications [38]. Hence, we formulate an equivalent form of
minimizing tensor average rank to approximate the tensor tubal rank.

3.1. Proposed `0 minimization framework. In many practical applications, e.g.,
denoising [3,7], recovery [36,70], and tensor completion [20], The low-tensor-rank
optimization model (1) are solved by its proximal form. Thus, we only consider
to solve the following proximal version of the tensor average rank minimization
problem:

min
X

λ ranka(X ) +
1

2
‖X − Y‖2F , (11)

where the tensor Y is known. However, directly solving the model (11) is NP-
hard [35]. Unlike most methods, we do not solve it by rank surrogates. Instead, we
explore the relationship between the tensor and its singular values. Based on this
model, we find that there exists a strong correlation between the low tensor-average-
rank property of tensor and the sparsity of singular values. To better depict the
correlation, we introduce Lemma 3.1 as follows,

Lemma 3.1. Denote Y ∈ Rn1×n2×n3 . L is an invertible linear transformation that
satisfies (4), and U ∗L S ∗L VH represents the t-SVD of Y. Then the optimum to
the following problem:

min
X

λ ranka(X ) +
1

2
‖X − Y‖2F , (12)
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can be expressed as X ∗ = R∗ ×3 L−1, where i-th frontal slice of R satisfies R∗(i) =

U(i)W∗(i)V(i)T , and the diagonal matrix W∗(i) is the solution of the following
problem:

min
W(i)

λ

n3

∥∥∥W(i)
∥∥∥

0
+

1

2γ

∥∥∥W(i) − S(i)
∥∥∥2

F
, i = 1, · · · , n3, (13)

where ‖·‖0 means `0 norm and γ is a fixed constant (please refer to Section 2.1).

Proof. Following [21], since the transform matrix L satisfies (4), we can get

(L⊗ In1
) · (bcirc(X )) · (L−1 ⊗ In2

) =


X

(1)

X
(2)

. . .

X
(n3)

 . (14)

Denote R = X ×3 L, hence rank(bcirc(X )) =
∑n3

i=1 rank(R(i)). According to the
definition of the tensor average rank and the property of L, we have

λ ranka(X ) +
1

2
‖X − Y‖2F

=
λ

n3

n3∑
i=1

rank(R(i)) +
1

2γ

∥∥X − Y∥∥2

F

=
λ

n3

n3∑
i=1

rank(R(i)) +
1

2γ

∥∥R− Y∥∥2

F

=

n3∑
i=1

λ

n3
rank(R(i)) +

1

2γ

∥∥∥R(i)
∥∥∥2

F
+

1

2γ

∥∥∥Y(i)
∥∥∥2

F
− 1

γ
Tr(R(i)TY(i)).

(15)

Denote U̇(i)W(i)V̇(i)T as the SVD of the matrix R(i), i = 1, 2, · · · , n3. We assume
n1 ≤ n2, and other conditions can be handled similarly. By von Neumanns trace

inequality [29], Tr(R(i)TY
(i)

) achieves its upper bound
∑n1

j=1 w
i
js
i
j if and only if

U̇(i) = U(i) and V̇(i) = V(i), where wij and sij are the j-th diagonal element of

matrix W(i) and S(i), respectively. Thus, we can obtain that the problem (12) is
equal to the following problem:

min
wi

j

n1∑
j=1

λ

n3
|wij |0 +

1

2γ
(wij − sij)2, i = 1, · · · , n3,

which is also equivalent to the problem (13). Denote W∗(i) is the optimun to (13),

i = 1, · · · , n3. We can get R∗(i) = U(i)W∗(i)V(i)T . Hence, X ∗ = R∗ ×3 L−1 is the
solution of problem (12).

Remark 3.2. For the fixed transformation L, γ and n3 are constant. The factors
γ and n3 can be integrated with λ in (13). Thus, the optimization models (13) is
converted into following equivalent formats:

min
W(i)

λ
∥∥∥W(i)

∥∥∥
0

+
1

2

∥∥∥W(i) − S(i)
∥∥∥2

F
, i = 1, · · · , n3, (16)

Accordingly, the tensor-average-rank minimization can be equivalently converted
into the `0-norm sparse constraint for its singular values. Based on the observation,
we propose a new biconvex Mathematical Program with Equilibrium Constraints
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(MPEC) to solve the tensor-average-rank minimization problem, which is clarified
by following Lemma 3.3 and Theorem 3.4.

Lemma 3.3 ( [60]). For any vector w, we have

‖w‖0 = min
0≤z≤1

〈1,1− z〉 , s.t. z� |w| = 0, (17)

where � means element-wise product, and z is a vector with size of w. z∗ =
1 − sign(|w|) is the unique solution of (17) and the signum function sign(·) is
componentwise.

Theorem 3.4. Let wi and si be the vector stretched by the diagonal elements
of the diagonal matrices W(i) and S(i) in (16), respectively, i = 1, · · · , n3. The
minimization problem (16) is equivalent to the following problem:

min
0≤zi≤1,wi

〈1,1− zi〉+
1

2λ
‖wi − si‖2 ,

s.t. zi � |wi| = 0, i = 1, · · · , n3,
(18)

where 〈·〉, �, and | · | respectively denote the inner product, element-wise product,
and absolute operator. λ is the parameter in (16).

Proof. Since W(i) and S(i) are diagonal matrices, we only need to consider the
diagonal elements of W(i) and S(i). The problem (16) can be converted as follows,

min
wi

|wi|0 +
1

2λ
‖wi − si‖2 , i = 1, · · · , n3,

where wi and si are represented as the vector stretched by the diagonal elements of
the matrices diag(wi1, w

i
2, · · · , win1

) and diag(si1, s
i
2, · · · , sin1

).Based on Lemma 3.3,
the solution to the above problem can be obtained by the problem as follows,

min
0≤zi≤1,wi

〈1,1− zi〉+
1

2λ
‖wi − si‖2 ,

s.t. zi � |wi| = 0, i = 1, · · · , n3.
(19)

The proof is completed.

Subsequently, we design a solving algorithm for the optimation problem (18).
Since wi, zi, and si in (18) are obtained from different frontal slices independently,
we respectively denote them as w, z, and s for convenience. Based on the proximal
alternating direction method of multipliers (PADMM) scheme [60], the augmented
Lagrangian function is formulated as follows,

L(w, z,p) = 〈1,1− z〉+
1

2λ
‖w − s‖2 + 〈z� |w|,p〉+

α

2
‖z� |w|‖2 , (20)

where 0 ≤ z ≤ 1, p is the Lagrangian multiplier, and α is a positive penalty
parameter. Hence, we can solve the problem (18) by two steps as follows:

z-update: The PADMM scheme introduces the proximal term
∥∥z− zk

∥∥2
for the

variable z. The k-th iteration of z is updated by

zk+1 = arg min
0≤z≤1

〈
z, ck

〉
+
α

2

∥∥z� |wk|
∥∥2

+
β

2

∥∥z− zk
∥∥2
, (21)

where β is the penalty parameter, and ck = pk � |wk| − 1. Thus, zk+1 is updated
by

zk+1 = min(1,max(0,
−ck + βzk

α|wk| � |wk|+ β
)). (22)
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Algorithm 1 The PADMM-based solver for tensor average rank minimization
problem (18)

Input: vector s
Parameter: kmit = 100, λ, α, β
Output: w

1: Initialization k = 0, z0 = p0 = 0, and w0 = s
2: while k < kmit do
3: Update zk+1 via (22)
4: Update wk+1 via (24)
5: Update pk+1 via (25)
6: k = k + 1
7: end while

w-update: Similarly, we can obtain

wk+1 = arg min
w

α

2

∥∥∥∥zk+1 � |w|+ pk

α

∥∥∥∥2

+
1

2λ
‖w − s‖2. (23)

Therefore, wk+1 is solved by

wk+1 = sign(s)�max(0,
1
λ |s| − pk � zk+1

1
λ + αzk+1 � zk+1

), (24)

where sign(·) is the signum function. Subsequently, the k-th iteration of Lagrangian
multiplier p is computed by

pk+1 = pk + αzk+1 � |wk+1|. (25)

Especially, the solving algorithm of problem (18) can be summarized in Algorithm
1. Besides, we give the convergence analysis as follows:

Theorem 3.5 (Convergence of Algorithm 1). {zk,wk,pk} is the sequence produced

by Algorithm 1. Assume pk satisfies
∑∞
k=0

∥∥pk+1 − pk
∥∥2

F
<∞. Then we have any

accumulation point of the sequence that satisfies the KKT condition of (18).

Proof. We first give the first-order KKT conditions for {z∗,w∗,p∗} as follows,
0 ∈ p∗ � |w∗| − 1 + ∂I(z∗),

0 ∈ 1
λ (w∗ − s) + p∗ � z∗ � ∂ ‖w∗‖1 ,

0 = z∗ �w∗,

(26)

where I(z) is the dicator function on the set {z|0 ≤ z ≤ 1}. The augmented
Lagrangian function can be rewritten as

L(w, z,p) = 〈1,1− z〉+
1

2λ
‖w − s‖2 +

α

2

∥∥∥z� |w|+ p

α

∥∥∥2

− 1

α
‖p‖2 , (27)

We denote J(w, z,p) = L(w, z,p) + ‖z− z′‖2, where z′ is the variable z at the
previous iteration. Thus, we have

J(wk, zk,pk)− J(wk, zk+1,pk) ≥ β

2

∥∥zk − zk+1
∥∥2
. (28)

Similarly, we can get

J(wk, zk+1,pk)− J(wk+1, zk+1,pk) ≥ β′

2

∥∥wk −wk+1
∥∥2
, (29)
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where β′ = min{α, 1
λγ }. According to the update of the Lagrangian multiplier, we

can get

J(wk+1, zk+1,pk+1)− J(wk+1, zk+1,pk) =
α

2

∥∥pk − pk+1
∥∥2
. (30)

Combining (28), (29), and (30), we can obtain that

J(wk, zk,pk)− J(wk+1, zk+1,pk+1)

≥ β

2

∥∥zk − zk+1
∥∥2

+
β′

2

∥∥wk −wk+1
∥∥2 − α

2

∥∥pk − pk+1
∥∥2
.

(31)

Since J(w, z,p) is bounded for all (w, z,p), we have
∞∑
k=0

β

2

∥∥zk − zk+1
∥∥2

+
β′

2

∥∥wk −wk+1
∥∥2 − α

2

∥∥pk − pk+1
∥∥2

≤ J(w0, z0,p0)− J(w∞, z∞,p∞) ≤ ∞.
(32)

Sequently, we have
∑∞
k=0 lim

k→∞
β
2

∥∥zk − zk+1
∥∥2

+ β′

2

∥∥wk −wk+1
∥∥2

= 0 and pk −
pk+1 → 0. According to the update of zk and wk, we have

0 = pk � |wk| − 1 + ∂I(zk) + β(zk+1 − zk),

0 ∈ 1

λ
(w∗ − s) + p∗ � z∗ � ∂ ‖w∗‖1 .

(33)

Thus, we can get the KKT condition
0 ∈ p∗ � |w∗| − 1 + ∂I(z∗),

0 ∈ 1
λ (w∗ − s) + p∗ � z∗ � ∂ ‖w∗‖1 ,

0 = z∗ �w∗.

(34)

Moreover, the proposed Algorithm 1 substantively provides a solving framework
for minimizing tensor ranks that exist in connection with the sparsity of tensor
singular values or transformed tensor singular values. Specifically, the proposed
framework can effectively minimize the tensor rank, whose minimization problem
can be converted into the l0 minimization form like (13). For example, various tensor
low-rank models, e.g., [10,31,45], depict the sparsity under different transformations,
which can be converted into the form of (13). These models all can be solved under
the proposed `0 minimization framework by minimizing the (13) form.

3.2. Tensor completion application. To demonstrate the effectiveness of the
proposed `0 minimization framework, we apply it to the tensor completion task.
Tensor completion refers to recovering the underlying tensor from the missing
observation [53]. A common solving scheme resorts to the low-tensor-rank model as
follows,

min
X

rank(X ), s.t. PΩ(X ) = PΩ(M), (35)

where M is the missing tensor, X is the underlying tensor, PΩ(·) is a projector, and
PΩ(X ) = PΩ(M) means the values of X and M in the area Ω are equal. Different
from directly utilizing it to minimize the tensor tubal rank, we develop a novel tensor
completion model according to the characteristics of the proposed `0 minimization.
First, we define a new tensor adaptive sparsity-deduced rank (TASR) to retain the
advantage of the frequency domain and enhance the connection between the sparsity
of tensor singular values and the low-rank property as follows,
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t-SVD Adaptive transform

（b）Distribution of singular values （c）Distribution of singular values 

     after the adaptive transform
（a）Underlying tensor
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Figure 4. The effect of transformation E. The MSI data Toy (size:
256× 256× 31), denoted as X , is decomposed with t-SVD. We provide
the distribution curve and histogram of singular values before and after
the transform. It is clear that the sparsity of singular values of X is
effectively enhanced by the adaptive transformation.

Definition 3.6 (TASR). Denote F as a frequency transformation, e.g. discrete
cosine transformation (DCT) and discrete Fourier transformation (DFT), that
satisfies FFT = FTF = γI, γ is a fixed constant. Then the TASR of A ∈ Rn1×n2×n3

is defined as follows,

rankTASR(A) :=

r∑
i=1

rank(R(i)), (36)

where R = A×3 E = A×3 F×3 E, F is the transform matrix of F and E ∈ Rr×n3

is an adaptive transform matrix that satisfies ETE = I. (r is a hyperparameter.)

Remark 3.7. TASR is similar to the tensor average rank under the coupled
transformation (FE). Compared with the original transformation L in (4), the
transformation E only satisfies ETE = I, and the frequency transformation F can
retain the advantage of frequency domain. Besides, the TASR is more flexible since
the transformation E is adaptively updated in applications. The TASR can enhance
the sparse distribution of singular values by the transformation E, which can fully
utilize the structural similarity of singular values in different frontal slices of tensor
(please refer to Figure 4). The value of r usually satisfies r < n3, which means that
the transformation E can effectively reduce running time.

Thus, we can build the tensor completion model as follows,

min
X

rankTASR(X ) s.t. PΩ(X ) = PΩ(M). (37)

Based on the PADMM scheme, we can effectively solve the above model. By
introducing the auxiliary variable D = X , the model (37) can be represented as
follows,

min
X ,D,E

rankTASR(D) + IΦ(X ) s.t. D = X , (38)
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where IΦ(X ) means

IΦ =

{
0 X ∈ Φ,

∞ otherwise,
(39)

and Φ := {X | PΩ(X ) = PΩ(M)}. Subsequently, the augmented Lagrangian
function of (38) can be deduced as follows,

L(X ,D,O,E, µ1) = rankTASR(D) + IΦ(X ) +
µ1

2

∥∥∥∥X −D +
O
µ1

∥∥∥∥2

F

, (40)

where O is the Lagrangian multiplier, and µ1 represents the penalty parameter.
Under the PADMM framework, we can solve the model (37) by the following three
sub-problems.
X sub-problem:
We address this sub-problem by fixing other variables except the variable X .

Thus, the X sub-problem can be represented as follows,

min
X

IΦ(X ) +
µ1

2

∥∥∥∥X −D +
O
µ1

∥∥∥∥2

F

. (41)

It is clear that X at k-th iteration can be updated by

X k+1 = PΩ(M) + PΩC (Dk − O
k

µk1
), (42)

where ΩC means the complement of Ω.
D sub-problem:
According to the augmented Lagrange function (40), the D sub-problem can be

denoted as follows,

min
D

rankTASR(D) +
µ1

2

∥∥∥∥X −D +
O
µ1

∥∥∥∥2

F

. (43)

Similar to Lemma 3.1, we introduce Theorem 3.8 that is based on the proposed `0
minimization framework to solve the sub-problem.

Theorem 3.8. Denote Y ∈ Rn1×n2×n3 and E ∈ Rr×n3 . The adaptive orthogonal
transformation E stisfies ETE = I. F is the frequency transformation that meets

FFT = FTF = γI. U(i)S(i)V(i)T is the SVD of G(i), i = 1, · · · , r, where G = Y×3E,
Y is Y on frequency domain. Then the optimum to the following problem:

min
X

λ rankTASR(X ) +
1

2
‖X − Y‖2F , (44)

can be expressed as X ∗ = R∗ ×3 ET ×3 F−1, where i-th frontal slice of R∗ satisfies

R∗(i) = U(i)W∗(i)V(i)T , and the diagonal matrix W∗(i) is the solution of the
following problem:

min
W(i)

λ
∥∥∥W(i)

∥∥∥
0

+
1

2γ

∥∥∥W(i) − S(i)
∥∥∥2

F
, i = 1, · · · , r. (45)
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Algorithm 2 The PADMM-based solver for the proposed tensor completion model
(37)

Input: Observed image M
Parameter: µ1, α, β, µ2, ρ, r , µmax = 1010, ε = 10−5, and kmit = 100
Output: X

1: Initialization k = 0, µ0
1 = µ1,X 0 =M, E0 = I, and D0 = O0 = 0

2: while k < kmit and RelCha> ε do
3: Update X k+1 via (42)
4: Update Dk+1 via (47)
5: Update Ek+1 via (49)
6: Update Lagrange multiplier Ok+1 via (50)

7: Update µk+1
1 via µk+1

1 = min{ρµk1 , µmax}
8: k = k + 1
9: end while

Proof. Denote R = X ×3 E. According to the definition of the TASR and the
property of E, we have

λ rankTASR(X ) +
1

2
‖X − Y‖2F

=λ

r∑
i=1

rank(R(i)) +
1

2γ

∥∥X − Y∥∥2

F

=

r∑
i=1

λ rank(R(i)) +
1

2γ

∥∥∥R(i) −G(i)
∥∥∥2

F

=

r∑
i=1

λ rank(R(i)) +
1

2γ

∥∥∥G(i)
∥∥∥2

F
+

1

2γ

∥∥∥R(i)
∥∥∥2

F
− 1

γ
Tr(G(i)TR(i)).

(46)

Denote U̇(i)W(i)V̇(i)T as the SVD of the matrix R(i), i = 1, 2, · · · , r. We assume
n1 ≤ n2, and other conditions can be handled similarly. By von Neumanns trace

inequality [29], Tr(G(i)TR(i)) achieves its upper bound
∑n1

j=1 w
i
js
i
j if and only if

U̇(i) = U(i) and V̇(i) = V(i), where wij and sij are the j-th diagonal element of

matrix W(i) and S(i), respectively. Thus, we can obtain that the problem (44) is
equal to the following problem:

min
wi

j

n1∑
j=1

λ|wij |0 +
1

2γ
(wij − sij)2, i = 1, · · · , r,

which is also equivalent to the problem (45). Denote W∗(i) is the optimun to (45). We

can get R∗(i) = U(i)W∗(i)V(i)T . Since R = X ×3E, we have X ∗ = R∗×3ET ×3F−1

is the solution of problem (44).

Remark 3.9. Theorem 3.8 builds the relationship between the TASR and the
`0-norm, and Theorem 3.4 further converts the `0-norm minimization (45) into an
equivalent biconvex problem (18). Thus, we can solve the TASR minimization by
the proposed `0 minimization framework.
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Assuming U
(i)
1 S

(i)
1 V

(i)
1

T
is the SVD of H(i), i = 1, · · · , r, where H = (X k+1

+
Ok

µk
1

)×3 Ek, we can update D by

Dk+1 = Qk+1 ×3 EkT ×3 F−1, (47)

where Q(i)k+1
= U

(i)
1 T(i)k+1

V
(i)
1

T
, and T(i)k+1

is obtained by Algorithm 1.
E sub-problem:
The adaptive transformation E is essential for the proposed TASR. To improve the

data adaptation of the transformation E, we adaptively compute the transformation.
By introducing a proximal term, E is updated steadily, and the k-th iteration result
of the transformation E is obtained by the following optimization problem:

min
E

∥∥∥∥∥Qk+1 − (X k+1
+
Ok

µk1
)×3 E

∥∥∥∥∥
2

F

+
µ2

2

∥∥E−Ek
∥∥2

F
,

s.t. ETE = I,

(48)

where µ2 is a fixed penalty parameter, Ek is the E obtained by the (k-1)-th iteration.
Because of orthogonal constraint [48], we obtain the closed-form solution of E as
follows,

Ek+1 = UVT (49)

where the matrices U and VT are from the SVD of µ2E
k + Q(3)(unfold(3)(X

k+1
+

Ok

µk
1

))T .

O update:
Under the PADMM framework, the multiplier O can be updated as

Ok+1 = Ok + µk1(X k+1 −Dk+1), (50)

and the parameter µ1 is updated by µk+1
1 = ρµk1 , where ρ is a fixed parameter such

that ρ > 1.
The relative change (RelCha) and the number of iterations kmit are used as the

termination condition of the algorithm [46], where the RelCha is defined as

RelCha =
∥∥X k+1 −X k

∥∥
F
/
∥∥X k∥∥

F
. (51)

The whole solving algorithm is summarized in Algorithm 2, where kmit is the
maximum number of iterations, µmax denotes the upper bound of µ1, and ε is a
tolerance value.

4. Numerical experiments. In this section, to demonstrate the effectiveness of
the proposed method, we conduct numerical experiments on multi-dimensional
image data, i.e., MSI data, HSI data, and video data. The benchmark includes
HaLRTC (12’TPAMI) [18], TNN (14’CVPR) [66], TNN-DCT (19’CVPR) [22],
PSTNN (20’JCAM) [9], IRTNN (22’TNNLS) [33], DTNN (23’TNNLS) [11]. These
methods are executed on the PC with 32Gb RAM, Intel(R) Core(TM) i7-8700K CPU
@3.70GHz, and NVIDIA GeForce GTX 1650. All the parameters are chosen according
to the recommendation of the authors. Besides, we provide some discussions. In
the proposed model, discrete cosine transformation (DCT) is employed as F for
the TASR (please refer to Definition 3.6). Peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM) [37] as the evaluation indices. Besides, for
MSI and HSI data, we use the spectral angle mapper (SAM) [61] and the relative
dimensionless global error in synthesis (ERGAS) [32] for accurate assessment.



A NOVEL 0̀ MINIMIZATION FRAMEWORK OF TENSOR TUBAL RANK AND ITS APPLICATION 15

(a) Observed (b) HaLRTC [18] (c) TNN [66] (d) TNN-DCT [22] (e) PSTNN [9]
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Q
(f) IRTNN [33] (g) DTNN [11] (h) Proposed (i) Ground-truth

Figure 5. Multi-dimensional data completion results on MSI Toy with
SR = 10%. The first row is the visual comparisons (R: 31-th, G: 20-
th, B: 10-th spectral bands, respectively), and the second row is the
residual images for better visualization (20-th spectral band). From left
to right are the observed image, results of different methods, and the
ground-truth.

4.1. Results on MSI data completion. In this part, we conduct the methods
of the benchmark on the MSI data with different sampling rates (SRs). We choose
two images, i.e., Toy and Cloth, from the CAVE dataset 1. The spatial size of all
the images is reshaped into 256× 256, which is widely applied in multi-dimensional
image processing e.g., [35]. As shown in Figure 5, compared with other methods, our
approach can recover more details of the underlying information. Clearly, one can
observe that our method achieves the best visual performance. On the different SRs,
our approach also shows superior abilities, which can be found in Tab. 1. Besides,
the time cost of our method is satisfactory, which is critical in practical applications.
Although HaLRTC [18] consumes the least time, the performance of the method is
limited. The results obtained by TNN-DCT [22] and PSTNN [9] have some spatial
and spectral distortions because of their limited constraint for singular values. It is
worth noting that DTNN [11] is the state-of-the-art method with data-dependent
dictionary learning. Compared with DTNN [11], our approach is better in terms of
running time and the evaluation index, i.e., PSNR and SSIM [37], which verifies the
validity of the proposed method.

1https://www.cs.columbia.edu/CAVE/databases/multispectral/

https://www.cs.columbia.edu/CAVE/databases/multispectral/
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(a) Observed (b) HaLRTC [18] (c) TNN [66] (d) TNN-DCT [22] (e) PSTNN [9]
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Figure 6. Multi-dimensional data completion results on HSI Pavia with
SR = 5%. The first row is the visual comparisons (R: 68-th, G: 40-
th, B: 10-th spectral bands, respectively), and the second row is the
residual images for better visualization (32-th spectral band). From left
to right are the observed image, results of different methods, and the
ground-truth.

4.2. Results on HSI data completion. For the HSI data, we test different
methods on the Pavia dataset and Washington DC dataset 2 with the size of
200× 200× 80 and 256× 256× 191, respectively. On the one hand, Figure 6 shows
the visual comparison of different methods on the Pavia dataset with SR = 5%,
which demonstrates the effectiveness of the proposed approach on the qualitative
assessment. On the other hand, Tab. 2 shows the quantitative results of methods
at different SRs. Although HaLRTC [18] spends the least time, the details cannot
be preserved well. The time consumption of IRTNN [33] and DTNN [11] is huge.
The proposed technique shows superiority in both completion results and time
consumption compared with other methods that use different transformations and
tensor rank surrogates.

4.3. Results on video data completion. For the video data, we cut the 70 frames
from Salesman and Akiyo 3. Although the tensor low-rank property of video data
is not stronger than MSI and HSI data, our method also achieves excellent results.

2https://rslab.ut.ac.ir/data
3http://trace.eas.asu.edu/yuv/

https://rslab.ut.ac.ir/data
http://trace.eas.asu.edu/yuv/
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(a) Observed (b) HaLRTC [18] (c) TNN [66] (d) TNN-DCT [22] (e) PSTNN [9]
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Figure 7. Tensor completion results on video image Akiyo with SR
= 20% (size: 144 × 176 × 70). The first row is the visual comparisons
for the 4-th frame, and the second row is the residual images for better
visualization (the 4-th frame). From left to right are the observed image,
results of different methods, and the ground-truth.

As shown in Figure 7, we choose the 4-th frame to display the visual effects, which
demonstrate the significance of our method for the video data. The performance of
TNN-DCT [22] and PSTNN [9] is limited since their rank approximations cannot
accurately deal with different singular values. On the data with different SRs, our
approach can get the best numerical results, which is revealed in Tab. 3.

4.4. Discussions.
Parameters analysis: In this part, we analyze the robustness of the five param-

eters in the proposed method, i.e., µ1, α, β, ρ, and µ2. We test these parameters
with r = 9 on the MSI data Toy. As shown in Figure 8, the proposed model is more
robust for the parameter ρ. When ρ increases to a critical point, the influence of the
parameter ρ would become weak. Obviously, the choice of µ1, α, and β is sensitive,
which should be carefully adjusted for better performance.

Ablation study: In this area, we conduct the ablation study to demonstrate the
effectiveness of the proposed solving algorithm of the TASR and the update of the
adaptive transformation E. Specifically, to verify the effect of the `0 minimization,
we replace it with the widely used TNN technique [66]. Similarly, we execute the
proposed tensor completion model without the improved transformation E to explore
the impact of E. As displayed in Tab. 4, the performance of the proposed model is
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Data
SR 3% 5%
Method PSNR SSIM SAM ERGAS Time (s) PSNR SSIM SAM ERGAS Time (s)

HaLRTC [18] 14.60 0.556 23.37 777.6 6.826 18.65 0.629 18.36 489.3 6.685
TNN [66] 25.10 0.747 22.03 254.1 338.7 27.45 0.815 18.71 198.8 337.0
TNN-DCT [22] 26.15 0.781 20.35 224.6 35.84 28.82 0.852 16.56 165.6 35.42
PSTNN [9] 25.54 0.740 22.19 244.4 84.82 28.73 0.837 17.46 174.2 84.48
IRTNN [33] 25.01 0.726 23.33 254.0 405.9 27.97 0.818 18.50 185.5 272.7
DTNN [11] 27.82 0.864 14.76 198.1 173.3 30.47 0.908 12.90 155.4 159.9
Proposed 28.31 0.805 17.42 159.1 14.88 33.42 0.917 12.02 88.63 14.91
SR 10% 20%
Method PSNR SSIM SAM ERGAS Time (s) PSNR SSIM SAM ERGAS Time (s)
HaLRTC [18] 25.46 0.802 11.78 224.4 6.790 29.20 0.895 8.421 146.1 6.527
TNN [66] 31.46 0.898 14.09 128.2 341.8 36.56 0.956 9.515 74.85 344.5
TNN-DCT [22] 27.95 0.834 16.41 182.2 35.33 36.90 0.962 8.740 71.17 32.68
PSTNN [9] 28.95 0.850 16.48 179.5 84.79 36.19 0.948 10.12 76.21 78.61
IRTNN [33] 32.58 0.906 13.76 110.4 158.7 38.22 0.964 8.873 62.04 97.08
DTNN [11] 35.39 0.957 8.252 91.73 159.4 43.32 0.989 4.485 33.33 172.5
Proposed 38.96 0.968 8.390 47.34 15.05 47.29 0.994 4.447 19.24 15.07

Data
SR 3% 5%
Method PSNR SSIM SAM ERGAS Time (s) PSNR SSIM SAM ERGAS Time (s)

HaLRTC [18] 18.04 0.293 17.73 514.5 7.188 19.04 0.321 16.88 462.0 6.519
TNN [66] 21.58 0.360 17.73 347.2 124.8 22.98 0.483 15.15 295.1 144.1
TNN-DCT [22] 22.55 0.421 14.29 314.5 35.00 23.91 0.540 12.59 268.5 33.25
PSTNN [9] 21.81 0.378 16.68 338.0 85.41 23.34 0.512 14.18 282.9 78.35
IRTNN [33] 21.32 0.326 18.53 358.0 337.4 23.04 0.480 15.27 293.1 464.3
DTNN [11] 24.37 0.620 10.69 249.6 168.2 26.18 0.736 8.442 202.6 161.4
Proposed 24.47 0.616 10.30 248.2 14.99 26.56 0.755 8.133 194.2 14.92
SR 10% 20%
Method PSNR SSIM SAM ERGAS Time (s) PSNR SSIM SAM ERGAS Time (s)
HaLRTC [18] 22.23 0.414 13.38 334.7 6.846 23.87 0.564 11.32 275.6 6.418
TNN [66] 25.84 0.685 11.39 211.0 155.1 30.24 0.860 7.620 126.6 194.9
TNN-DCT [22] 27.05 0.747 9.390 184.3 29.37 31.78 0.899 6.162 106.2 28.74
PSTNN [9] 26.76 0.732 10.36 189.3 74.44 31.87 0.886 6.844 107.5 66.95
IRTNN [33] 26.40 0.710 10.89 197.4 144.1 31.12 0.877 7.069 114.9 90.05
DTNN [11] 29.98 0.884 5.953 129.9 154.2 36.01 0.963 3.521 66.75 156.8
Proposed 31.19 0.897 5.331 113.1 15.19 37.81 0.969 3.075 55.36 15.21

Ideal value +∞ 1 0 0 0 +∞ 1 0 0 0

Table 1. Quantitative results on MSI data Toy and Cloth, respectively. (Bold:
best; Underline: second best; Time: running time)

Data
SR 2% 5% 10%

AverT (s)
Method PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS

HaLRTC [18] 14.36 0.152 18.76 637.5 20.12 0.318 8.657 329.0 22.28 0.457 7.875 256.4 22.68

TNN [66] 24.58 0.649 9.134 199.7 28.58 0.836 7.358 130.2 32.61 0.920 5.601 86.91 519.9

TNN-DCT [22] 25.66 0.697 7.365 174.0 29.67 0.868 5.646 109.5 38.49 0.980 2.377 40.13 104.9

PSTNN [9] 25.33 0.701 9.968 184.3 29.43 0.857 7.578 120.6 33.99 0.932 5.589 77.88 187.3

IRTNN [33] 24.34 0.636 9.130 205.6 28.97 0.841 7.553 124.8 32.58 0.921 5.545 87.34 374.1

DTNN [11] 26.80 0.748 6.114 153.7 32.79 0.936 3.326 76.57 41.89 0.991 1.294 27.91 125.7

Proposed 28.13 0.827 4.905 130.9 36.17 0.963 2.580 53.38 43.41 0.993 1.118 24.74 64.21

Data
SR 2% 5% 10%

AverT (s)
Method PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS PSNR SSIM SAM ERGAS

HaLRTC [18] 30.38 0.541 26.31 399.2 33.42 0.663 17.49 274.4 36.45 0.751 11.97 185.0 87.87

TNN [66] 31.58 0.702 12.81 494.2 34.96 0.834 8.940 336.6 38.57 0.914 6.129 219.3 2204

TNN-DCT [22] 31.79 0.706 12.24 299.0 35.76 0.862 8.002 203.3 39.09 0.929 5.601 146.7 479.0

PSTNN [9] 32.35 0.738 12.24 468.9 36.06 0.866 8.287 299.1 39.38 0.929 5.769 196.6 797.9

IRTNN [33] 32.00 0.714 12.83 485.2 35.33 0.845 8.559 298.9 39.59 0.932 5.447 177.3 1410

DTNN [11] 40.81 0.897 7.424 111.8 47.67 0.974 3.767 50.86 55.69 0.995 1.803 22.05 9716

Proposed 42.47 0.910 6.704 90.05 50.01 0.976 3.390 42.99 57.65 0.996 1.457 17.17 135.7

Ideal value +∞ 1 0 0 +∞ 1 0 0 +∞ 1 0 0 0

Table 2. Quantitative results on HSI data Pavia and Washington DC, re-
spectively. (Bold: best; Underline: second best; AverT: average running time)

affected by the condition without the `0 approach or the improved transformation.
In addition, by comparing (a) and (c), we can find the proposed `0 solving algorithm
effectively shrinks the singular values. The validity of the improved transformation
is proofed by (c) and (d) of Tab. 4.
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Data
SR 10% 20% 30%

AverT (s)
Method PSNR SSIM PSNR SSIM PSNR SSIM

HaLRTC [18] 31.81 0.935 37.64 0.980 41.57 0.990 8.152
TNN [66] 33.54 0.945 36.76 0.972 39.49 0.984 429.2
TNN-DCT [22] 34.26 0.954 37.76 0.979 40.72 0.989 33.23
PSTNN [9] 33.68 0.944 37.10 0.974 39.99 0.986 50.23
IRTNN [33] 33.77 0.944 37.19 0.974 40.01 0.985 117.4
DTNN [11] 36.00 0.972 40.29 0.989 43.52 0.994 569.9
Proposed 36.33 0.973 40.70 0.989 43.64 0.994 47.57

Data
SR 10% 20% 30%

AverT (s)
Method PSNR SSIM PSNR SSIM PSNR SSIM

HaLRTC [18] 22.84 0.571 25.91 0.736 28.02 0.822 12.26
TNN [66] 30.72 0.894 33.70 0.941 35.92 0.962 583.0
TNN-DCT [22] 31.06 0.901 34.16 0.946 36.45 0.966 39.43
PSTNN [9] 31.24 0.901 34.10 0.944 36.21 0.964 111.0
IRTNN [33] 30.82 0.893 33.94 0.942 36.22 0.964 156.6
DTNN [11] 32.26 0.928 35.22 0.959 37.92 0.976 545.4
Proposed 32.44 0.927 35.55 0.960 38.11 0.976 32.20

Ideal value +∞ 1 +∞ 1 +∞ 1 0

Table 3. Quantitative results on video data Akiyo and Salesman, respectively.
(Bold: best; Underline: second best; AverT: average running time)
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Figure 8. Robustness analysis for the five parameters (a) µ1, (b) α, (c)
β, (d) ρ, and (e) µ2. (data: MSI Toy, SR = 10%)

Time consumption analysis: The designed algorithm involves the transforma-
tion E. The adaptive transformation E is updated iteratively, and the size of the
transformation is critical. In this part, we analyze the effect of the parameter r on
the algorithm. Specifically, as displayed in Figure 9, we calculate the change in PSNR
and running time as the parameter r varies. We can observe that PSNR becomes
stable when r reaches 9, while the running time increases as r increases. Thus, the
appropriate choice of r can effectively reduce running time without compromising
the quality of the result.

Numerical convergence: The numerical convergence analysis of the proposed
tensor completion model is provided in this part. We calculate the RelCha at each
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Figure 9. The PSNR and running time for different parametr r on the
MSI Toy with SR = 10%.

Method PSNR SSIM Time (s)

(a) TNN [66] 27.95 0.834 17.08
(b) w/o `0 approach 32.12 0.918 52.49

(c) w/o improved transformation 34.26 0.920 93.13
(d) Proposed 38.96 0.968 14.77

Table 4. Ablation experiment results on the MSI Toy with SR = 10%. (Bold:
best; Underline: second best)
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Figure 10. Convergence analysis for the proposed tensor completion
model on the HSI Pavia with SR = 5%, 10%, respectively.

iteration of Algorithm 2, where RelCha is defined in (51). As shown in Figure 10,
the RelCha curves show the convergence behavior of the proposed algorithm at
different SR conditions. We can observe that the algorithm tends to converge when
the iteration number is more than 60. This numerical experiment shows that the
proposed multi-dimensional data completion model has excellent convergence ability.

Singular value constraint analysis: In this part, we discuss the singular value
constraint of different rank approximations. As depicted in Figure 11, we illustrate
the disparity between the tensor singular value distributions of the underlying tensor
and the results reconstructed by various rank surrogates. It is evident that the
larger singular values constructed by TNN [22] and Schatten p-norm [25] differ
significantly from those of the underlying tensor. Although the Logarithmic norm [1]
can handle larger singular values, there still exist some singular values that are
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(a) Ground-truth (b) TNN (`1-norm) [22] (c) Schatten p-norm [25]
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Figure 11. The difference between tensor singular value distributions
of underlying tensor and the results reconstructed by different rank
surrogates. The i-th row of the image means the difference in the i-th
spectral band of the data. (data: MSI Toy, size: 200×200×31, sampling
rate: 20%)

difficult to constrain. Our method effectively addresses the constraint of different
tensor singular values due to its robust ability to handle various singular values.

5. Conclusions. In this article, we propose a novel `0 minimization framework of
tensor tubal rank, which can also be extended to minimize other sparsity-related
tensor ranks. Different from other rank surrogates, the proposed framework for-
mulates an equivalent form of tensor average rank minimization and displays the
powerful constraint ability for the sparsity of tensor singular values. A convergent
algorithm, i.e., Algorithm 1, is developed to solve it. In addition, we propose TASR
by an adaptive transformation and then give a new model for the multi-dimensional
image completion application, which can fully explore the sparse constraint of the `0
minimization framework. Based on the scheme of PADMM, we design an effective
algorithm, i.e., Algorithm 2, to solve the completion model. Numerical experiments
on multi-dimensional data, e.g., MSI, HSI, and video data, verify the excellent
performance of the `0 minimization framework for the completion task. The pro-
posed model achieves state-of-the-art results. In the future, the applications of the
TASR on image denoising [6], restoration [51,69], and super-resolution [5,52] can be
considered.
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