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Abstract. The matrix rank approximation has shown high effectiveness in the matrix

rank minimization (MRM) problem, which aims to recover the underlying low-rank

structure from the observed matrix by imposing the rank constraint. The nuclear norm,

serving as a convex surrogate of matrix rank, is employed in the MRM problem by shrink-

ing singular values of the observed entry. However, this substitution treats each singular

value equally, which is virtually ℓ1-norm penalty of the singular value vector. Theoret-

ically, the rank function of the matrix can be considered as ℓ0-norm of its singular val-

ues. Consequently, minimizing the nuclear norm frequently results in biased solutions

in various applications. In this article, we first propose a novel nonconvex rank approx-

imation, named tight and flexible rank (TFR) approximation, to describe rank function

effectively. Specifically, the TFR approximation can more tightly approach the rank func-

tion and exhibit greater flexibility in handling diverse singular values, as compared to

existing nonconvex rank approximations. Furthermore, we apply TFR approximation to

matrix completion and develop a solving algorithm with guaranteed convergence based

on the framework of proximal alternating minimization. Extensive experiments reveal

that the proposed matrix completion model with TFR approximation outperforms sev-

eral existing state-of-the-art convex and nonconvex methods.

AMS subject classifications: 68U10, 65K10, 15A83
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1. Introduction

Matrices are widely used in various fields, including computer vision and machine learn-

ing [10,27,43–45,47,60,61], where some of their features, especially the low-rank prop-

erty, can be utilized [36, 39, 56, 63]. It is worth noting that many related tasks — e.g.

matrix completion [5], compressive sensing [11], and image denoising [13,38,70], can be
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described as the matrix rank minimization (MRM) problem, which consists in finding an

approximate low-rank matrix from its degraded observation by the rank constraint [29].

Mathematically, this rank minimization problem can be formulated as follows:

min
X∈Rm×n

rank(X)

s.t. A (X) = B,
(1.1)

where X ∈ Rm×n is the underlying matrix, A : Rm×n → Rm×n a linear map, and B ∈

R
m×n the observed matrix. The choice of A depends on the specific application. Since

the direct solution of the problem (1.1) is NP-hard [6], it usually depends on replacing the

discontinuous rank function by an appropriate matrix rank approximation [20,21,62]. The

later can be represented as

min
X∈Rm×n

Ψ(X)

s.t. A (X) = B,
(1.2)

where Ψ(X) is the rank approximation of matrix X. Because the matrix rank is the number

of non-zero singular values — i.e. ℓ0-norm of the singular value vector, Ψ(X) is usually

defined as a function of singular values [24,71]. Thus, the MRM problem (1.1) is often ap-

proached by minimizing an appropriate rank approximation that penalizes singular values.

This method is widely-used in various applications [40,48,65].

As the tightest convex approximation of the matrix rank, the nuclear norm is defined

as the sum of the singular values. This transforms the minimization of the matrix rank

into a constraint on singular values of the underlying matrix [15]. Candès and Recht [7]

proved that low-rank structures can be extracted from the degraded matrix by minimizing

the nuclear norm with a high probability. The application of the nuclear norm further

demonstrates the effectiveness of the rank approximation defined by singular values [25].

Virtually, the singular value provides quantifiable information of the matrix. For example,

larger singular values usually contain significant information about textures and edges [59].

However, the nuclear norm treats the singular values of the matrix equally. As a result, the

nuclear norm shrinks the same value for each singular value. Numerous studies — e.g.

[33,50,68], show that usually such a uniform shrinkage leads to a restricted performance.

Theoretically, the rank function of the matrix is ℓ0-norm of its singular values, and the

relationship between the nuclear norm and the rank of matrices can be seen as the rela-

tionship between ℓ0-norm and ℓ1-norm of singular value vectors [37], cf. Section 2 for

more details. Clearly, there exists a distance between two norms for the constraint on sin-

gular values, which limits the performance of the nuclear norm. Note that there are many

nonconvex matrix rank approximations aimed to better describe the ℓ0-norm for singular

values, [35,40]. In particular, Hu et al. [24] proposed the truncated nuclear norm, defined

as the sum of the smaller singular values. Dong et al. [11] achieved promising results on

compressive sensing by using the nonconvex logdet function as the surrogate of the rank

function. Kang et al. [26] successfully applied the logdet function to recommender system

via matrix completion. Nie et al. [34] utilized the Schatten p-norm for low-rank matrix

restoration. Chen et al. [8] proposed the logarithmic norm to induce a sparsity-driven
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Figure 1: The relationship between MRM problem and rank approximation minimization. (a) The rank
function for singular values. (b) The similarity comparison between different matrix rank approximations
and ℓ0-norm. It is evident that our TFR approximation is closer to ℓ0-norm compared with the convex
and nonconvex rank surrogates — i.e. ℓ1-norm [5], logdet function [11], Schatten p-norm [34], and
logarithmic norm [8].

surrogate of the rank function. However, as Fig. 1(b) shows, neither of these approaches

produces an appropriate approximation of the ℓ0-norm. This observation provides the im-

petus to explore a more stringent approximation of the matrix rank function, one that aligns

notably well with the ℓ0-norm characteristic of the singular value vector. Furthermore, in

practical applications, the real image data typically exhibit approximate low-rank structures

rather than an absolute low-rank profile. This means that there are still slight perturbations

around ℓ0-norm according to specifical data [33]. Consequently, the rank approximation

has to be flexible while approaching ℓ0-norm to achieve excellent results [53]. Hence, it

is imperative for the rank approximation to contemplate both flexibility and approxima-

tion [42].

In this paper, we first propose a nonconvex tight and flexible rank (TFR) approximation.

On the one hand, unlike the current matrix rank approximations, the TFR approximation is

closer to ℓ0-norm of singular values. On the other hand, as displayed in Fig. 2, the proposed

TFR approximation can flexibly treat different singular values by the appropriate param-

eter selection, which is essential in practical applications [22, 53]. In addition, the TFR

proximal problem of singular values — i.e. (3.8), is the critical step in minimizing the TFR

approximation. To address this proximal problem, we design a convergent algorithm — viz.

Algorithm 3.1. Finally, to verify the practical potential of the proposed TFR approximation,

we give a new matrix completion model with the TFR approximation. Subsequently, an al-
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Figure 2: The proposed TFR approximation with different parameters. It is clear that the TFR approx-
imation can flexibly treat different singular values by parameter adjustment.

gorithm based on the proximal alternating minimization (PAM) framework [4] is developed

to solve the model, and the convergence guarantee of the algorithm — i.e. Algorithm 4.1,

is provided. Experiments on synthetic and real data demonstrate the effectiveness of the

novel TFR approximation in matrix completion.

The main contributions of this paper can be summarized as follows:

1. We propose a novel TFR approximation, which can achieve a tighter approximation

of the matrix rank and flexibly penalize different singular values, to well describe

ℓ0-norm for singular values. Also, we give a convergent algorithm to solve the TFR

proximal problem of singular values.

2. We build a new matrix completion model with the TFR approximation and develop

a PAM-based algorithm with convergence guarantee to solve it.

3. Extensive experiments demonstrate that the proposed matrix completion model achie-

ves excellent performance compared to many state-of-the-art methods, which further

verifies the great practical potential of the TFR approximation.

The rest of this paper is organized as follows. Section 2 provides some preliminaries.

Section 3 introduces the TFR approximation. Section 4 applies TFR approximation to ma-

trix completion and provides the model, algorithm, and convergence guarantee. Section 5

conducts the numerical experiments to verify the effectiveness. Finally, Section 6 draws

conclusions.

2. Preliminaries

In this section, we elaborate on the MRM problem. The main goal of this article is

to solve the MRM problem (1.1). The key step is to solve the following unconstrained

optimization problem:

min
X
λ rank (X) +

1

2
‖X− Y‖2

F
, (2.1)
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where Y is a known matrix and λ a positive balanced parameter. This problem occurs in

many practical tasks — cf. [54]. To clearly clarify the rank constraint and its relation to the

nuclear norm, we present the following theorem, whose proof can be found in Appendix.

Theorem 2.1. Let Y = Udiag (σ1,σ2, · · · ,σm)V
T be the SVD of a matrix Y ∈ Rm×n, m ≤ n,

and di denotes the i-th singular value of X. The optimum to the problem

min
X
λ rank (X) +

1

2
‖X− Y‖2F

can be expressed as X= Udiag (d̂1, d̂2, · · · , d̂m)V
T , where (d̂1, d̂2, · · · , d̂m) is the solution to the

following optimization problem:

min
d1,d2,··· ,dm

λ

m∑

i=1

‖di‖0 +
1

2
(di −σi)

2, (2.2)

where ‖ · ‖0 means ℓ0-norm.

According to Theorem 2.1, the rank constraint on the matrix X can be transformed into

ℓ0-norm constraint on its singular values. However, direct solving (2.2) is difficult since ℓ0-

norm is discontinuous. To overcome this drawback, the nuclear norm defined as the sum of

the singular values is used to relax the ℓ0-norm. Following Theorem 2.1, the minimization

of nuclear norm is similarly equal to the ℓ1-norm constraint on singular values — i.e.

min
X
λ‖X‖∗ +

1

2
‖X− Y‖2

F
⇔ min

d1,d2,··· ,dm

λ

m∑

i=1

‖di‖1 +
1

2
(di −σi)

2, (2.3)

where ‖X‖∗ and ‖di‖1 denote nuclear norm of the matrix X and ℓ1-norm of the singular

value di, respectively. It is clear that the nuclear norm minimization problem (2.3) is to re-

place ℓ0-norm by ℓ1-norm [31]. Due to the difference between the two norms, the nuclear

norm cannot describe the constraint of ℓ0-norm for singular values. Subsequently, to over-

come this drawback, some nonconvex rank approximations — e.g. logdet function [11],

Schatten p-norm [34], and logarithmic norm [8], are proposed and achieve better results.

Nonetheless, these rank approximations lack the necessary flexibility and cannot closely

approximate the ℓ0-norm. The critical point of the MRM problem is finding an appropriate

function that can obtain a good resemblance of ℓ0-norm. Besides, due to the nonconvex-

ity of these approximations, designing an effective algorithm for solving the nonconvex

problem is challenging [30]. It is still necessary to develop an algorithm in order to solve

the nonconvex rank approximation minimization problem — i.e. the problem (1.2) for

nonconvex rank approximation Ψ(X), cf. refs. [9,18,66].

3. A TFR Approximation

Bearing in mind the above concern, we propose a novel nonconvex TFR approximation,

which is defined as follows.
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Definition 3.1 (TFR Approximation). The TFR approximation for the matrix X is defined as

‖X‖TFR :=

m∑

i=1

h(di), (3.1)

where X ∈ Rm×n, m ≤ n, di, i = 1,2, . . . , m denotes i-th singular value of X, and

h(x) =
bx p

1/α+ x p
, p > 0. (3.2)

The TFR approximation (3.1) constrains the matrix X by the function h(x), i.e. (3.2)

and the TFR approximation is defined as

min
X
‖X‖TFR

s.t. A (X) = B.
(3.3)

It is equivalent to (1.2) when Ψ(X) is TFR approximation. Compared to other rank replace-

ments, this TFR approximation provides a tighter substitute for ℓ0-norm. In addition, TFR

approximation can flexibly constrain the singular values. As displayed in Fig. 2, the height,

the slope, and the tightness of TFR approximation are adjusted by b, p, and α, respectively.

Similar to the nuclear norm, the TFR approximation minimization (3.3) can be effectively

solved by the following proximal operation:

arg min
X

λ

m∑

i=1

h(di) +
1

2
‖X− Y‖2F . (3.4)

Note that because of the luck of the convexity, it is difficult construct an effective solution

by the nonconvex rank approximation — cf. [67]. In the rest of this section, we concen-

trate on developing a convergent algorithm for the approximal problem (3.4), starting with

a lemma, which shows an important property — i.e. the monotonicity of the TFR approxi-

mation.

Lemma 3.1. For the function h in (3.2), let

Proxh(y) := arg min
x

λ h(x) +
1

2
(x − y)2.

Then the function Proxh(·) is monotone in the sense that if y1 > y2 and x i ∈ Proxh(yi),

i = 1,2, then x1 ≥ x2.

Proof. Since the function h is bounded below, the proximal operator Proxh(·) is bounded.

The optimality of x i, i = 1,2 yields

λ h(x2) +
1

2
(x2 − y1)

2 ≥ λ h(x1) +
1

2
(x1 − y1)

2, (3.5)

λ h(x1) +
1

2
(x1 − y2)

2 ≥ λ h(x2) +
1

2
(x2 − y2)

2. (3.6)
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Summing (3.5) and (3.6), we obtain

(x2 − y1)
2 + (x1 − y2)

2 ≥ (x1 − y1)
2 + (x2 − y2)

2,

which implies

(x1 − x2)(y1 − y2) ≥ 0.

Hence, if y1 > y2, then x1 ≥ x2.

Based on Lemma 3.1, we can give the following Theorem 3.1.

Theorem 3.1. Let Y = Udiag (σ1,σ2, · · · ,σm)V
T be the SVD of Y. Then an optimal solution

to (3.4) is

X∗ = Udiag
�
d∗

1
, d∗

2
, · · · , d∗

m

�
V,

where d∗
1
≥ d∗

2
≥ · · · ≥ d∗

m
, and

d∗i ∈ Proxh(di) = arg min
di≥0

λh(di) +
1

2
‖di −σi‖

2
F .

Proof. Let d1 ≥ d2 ≥ · · · ≥ dm ≥ 0 be the singular values of X. According to the von

Neumanns trace inequality [14], we have

‖X− Y‖2
F
= Tr (XT X)− 2Tr (XT Y) + Tr (YT Y)

=

m∑

i=1

d2
i
− 2Tr (XT Y) +

m∑

i=1

σ2
i

≥

m∑

i=1

d2
i
− 2

m∑

i=1

diσi +

m∑

i=1

σ2
i

=

m∑

i=1

(di −σi)
2.

Note that the above inequality becomes equality if X admits the singular value decompo-

sition representation X = Udiag (d1, d2, · · · , dm)V
T , where U and V are the left and right

orthonormal matrices in the SVD of Y [14]. In this case, the problem (3.4) can be written

as

min
d1≥d2≥···≥dm≥0

λ

m∑

i=1

h(di) +
1

2
(di −σi)

2. (3.7)

Since σ1 ≥ σ2 ≥ · · · ≥ σm and by Lemma 3.1, the function Proxh(·) is monotone, there

exist d∗
i
∈ Proxh(σi), i = 1,2, . . . , m such that d∗

1
≥ d∗

2
≥ · · · ≥ d∗

m
. Such a choice of d∗

i
is

optimal to (3.7). Therefore, Udiag (d∗
1
, d∗

2
, · · · , d∗

m
)V is optimal to (3.4).

According to Lemma 3.1 and Theorem 3.1, the crucial step in the proximal problem (3.4)

is to resolve the TFR proximal problem for singular values as follows:

Proxh(y) = arg min
x

λ h(x) +
1

2
(x − y)2. (3.8)
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Theorem 3.2. Let

f y(x) := λh(x) +
1

2
(x − y)2,

x̂ y :=max
�

x | ∇ f y(x) = 0, 0≤ x ≤ y
	
.

If the function h in (3.2) is concave and its gradient ∇h is convex, then

x∗ = arg min
x=0, x̂ y

f y(x)

is optimal to (3.8).

Remark 3.1. The proof of Theorem 3.2 is given in Appendix. Theorem 3.2 assumes some

conditions for h, which are easily satisfied by appropriate parameter choice — cf. Fig. 2.

Theorem 3.2 and Algorithm 3.1 allow to determine the solution to the problem (3.8).

The next theorem guaranties the convergence of the corresponding sequence.

Algorithm 3.1 Solution of (3.8).

Input: y ≥ 0.

Parameter: α, b, λ, and p.

Output: optimal solution x∗.

1: if ∇h(y) = 0 then

2: Return x̂ y = y,

3: else

4: Initialization x0 = y and k = 0.

5: while not converge do

6: Update xk+1 = y −λ ∇h(xk).

7: if xk+1 < 0 then

8: Return x̂ y = 0,

9: break.

10: end if

11: k = k + 1.

12: end while

13: end if

14: Compare f y(0) and f y ( x̂
y) to identify x∗.

Theorem 3.3. Let x0 = y ≥ 0 and {xk} be the sequence produced by Algorithm 3.1. Then,

under the notations of Theorem 3.2, we have

lim
k→+∞

xk = x̂ y .

Proof. First, for any x > x̂ y , we prove that

y −λ∇h(x)< x .



A Novel Nonconvex Rank Approximation with Application 9

Assume that there exists ex > x̂ y such that y −∇h(ex) > ex . Because

∇h(x) =






b

α(1/α+ x)2
, p = 1,

pb

αx1−p(1/α+ x p)2
, otherwise.

It is easily seen that ∇h(x) is continuous, decreasing, and positive. Since ∇h(y) > 0, for

y > x̂ y we have

y −λ∇h(y) < y.

Therefore, there are x̂ > x̂ y and x̂ ∈ (min(y, ex),max(y, ex)) such that y −λ h( x̂) = x̂ . This

contradicts the definition of x̂ y . Thus,

xk+1 = y −λ ∇h(xk) < xk.

Since {xk} is bounded below by x̂ y , the sequence {xk} converges to an x ≥ x̂ y . Passing to

the limit in the equation

xk+1 = y − λ ∇h(xk)

as k tends to∞, we get x = y −λ ∇h(x), i.e. limk→+∞ xk = x̂ y .

4. Application to Matrix Completion

To verify the validity of the TFR approximation, we use it in matrix completion problem

— a significant application of the rank approximations [16]. Matrix completion refers to

completing the missing matrix by the low-rank property of matrices [2]. More exactly, the

matrix completion problem has the form

min
X

rank (X)

s.t. PΩ(X) =PΩ(M),
(4.1)

where M is the degraded matrix, X is the underlying matrix, PΩ(·) is a projector, and

PΩ(X) = PΩ(M) means the values of X and M in the area Ω are equal. Obviously, (4.1)

is a specific MRM problem (1.1). In this section, we propose a novel matrix completion

model. Considering the non-convexity of the proposed TFR approximation, we develop an

algorithm based on the PAM framework [4] and provide its convergence analysis.

4.1. The model and algorithm

Based on the proposed TFR approximation, we construct a new nonconvex model for

the matrix completion. It can be formulated as follows:

min
X
‖X‖TFR

s.t. PΩ(X) =PΩ(M).
(4.2)
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The above model (4.2) can be transformed into the unconstrained format

min
X
‖X‖TFR +IΦ(X), (4.3)

where

IΦ =

¨
0, X ∈ Φ,

∞, otherwise,

and Φ := {X | PΩ(X) = PΩ(M)}. Since it is difficult to solve the problem (4.3) directly,

we introduce an auxiliary variable W = X. Using the half quadratic splitting (HQS) tech-

nique [17], we can rewrite the problem (4.3) in the form

min
X,W
‖W‖TFR +

µ

2
‖X−W‖2

F
+IΦ(X), (4.4)

where µ is a positive penalty parameter. Under the PAM framework [4, 49], the problem

(4.4) is effectively solved by updating each variable alternately — i.e.

Xk+1 = arg min
X

IΦ(X) +
µ

2
‖X−Wk‖2F +

ρ

2
‖X−Xk‖2F ,

Wk+1 = arg min
W

‖W‖TFR +
µ

2
‖Xk+1−W‖2

F
+
ρ

2
‖W−Wk‖2

F
,

where ρ is the penalty parameter.

X sub-problem: The X sub-problem at (k+1)-th iteration has the form

min
X
IΦ(X) +

µ

2
‖X−Wk‖2

F
+
ρ

2
‖X−Xk‖2

F
. (4.5)

It can be exactly solved by

Xk+1 =PΩ(M) +PΩC

�
µWk +ρXk

µ+ρ

�
, (4.6)

where ΩC refers to the complement of Ω.

W sub-problem: According to (4.4), the W sub-problem at (k+1)-th iteration has the

form

min
W
‖W‖TFR +

µ

2
‖Xk+1−W‖2

F
+
ρ

2
‖W−Wk‖2

F
. (4.7)

It can be reduced to the problem

min
W
‖W‖TFR +

µ+ρ

2






µXk+1+ρWk

µ+ρ
−W






2

F

. (4.8)

Theorem 3.1 shows that the solution of (4.8) has the form

Wk+1 = eUdiag
�
σ1(W

k+1), · · · ,σm(W
k+1)
� eVT , (4.9)
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where eUdiag (eσ1, eσ2, · · · , eσm)eVT is the SVD of (µXk+1+ρWk)/(µ+ρ), and σi(W
k+1) is

the optimum to the optimization problems

σi(W) = Proxh(eσi), i = 1,2, . . . , m. (4.10)

The problems (4.10) can be effectively solved by Algorithm 3.1. The solution process is

summarized in Algorithm 4.1, where the relative change (RC) and the number of iterations

kmit are used as the termination condition. The real change is defined by

RC =
‖Xk+1−Xk‖F
‖Xk‖F

. (4.11)

Algorithm 4.1 PAM-Based Solver for Matrix Completion Model (4.2).

Input: Observed image M.

Parameter: µ, kmit , ǫ, α, b, ρ, p.

Output: X.

1: Initialization k = 0,X0 =M, and W0 = 0.

2: while k < kmit and RC> ǫ do

3: Update Xk+1 via (4.6).

4: Update Wk+1 via (4.9).

5: k = k + 1.

6: end while

4.2. Convergence of Algorithm 4.1

Here we present sufficient conditions for the convergence of Algorithm 4.1, but let us

first recall the definitions of semi-algebraic sets, semi-algebraic functions, and Kurdyka-

Łojasiewicz (KŁ) functions.

Definition 4.1 (Semi-Algebraic Set, cf. Attouch et al. [1]). A subset S of Rn is called real

semi-algebraic if there exists a finite number of real polynomial functions Ai j, Bi j : Rn → R

such that

S = ∪
p

j=1
∩

q

i=1

�
x ∈ Rn : Ai j = 0, Bi j < 0

	
.

Definition 4.2 (Semi-Algebraic Function, cf. Attouch et al. [1]). A function f : Rn →

R∪{+∞} is called semi-algebraic if its graph {(x , y) ∈ Rn+1 : f (x) = y} is a semi-algebraic

subset of Rn+1.

By dom(∂ f ) we denote the domain of ∂ f .

Definition 4.3 (KŁ property, cf. Attouch et al. [1]). We say that a function f : Rn → R ∪

{+∞} satisfies the KŁ property at x ∈ dom(∂ f ) if there exist η ∈ (0,+∞], a neighborhood

U of x and a continuous concave function ϕ : [0,η)→ R+ such that
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* ϕ(0) = 0,

* ϕ is C1 on (0,η),

* for all v ∈ (0,η),ϕ′(v)> 0,

* for all s in U ∩ { f (x)< f (s) < f (x) +η}, the following KŁ inequality holds:

ϕ′
�

f (s)− f (x)
�
dist
�
0,∂ f (s)
�
≥ 1,

where dist(0,∂ f (s)) := ‖∂ f (s)− 0‖.

Remark 4.1. A proper lower semicontinuous function is called KŁ function if the function

is semi-algebraic and the KŁ inequality holds at any point x ∈ dom(∂ f ) [3].

Let us study the convergence of Algorithm 4.1. For convenience, we denote F(W,X) =

‖W‖TFR + (µ/2)‖X−W‖2F +IΦ(X).

Lemma 4.1. The function F(W,X) is a KŁ function.

Proof. Following [46, 49], h(x) is a real analytic function, and the TFR approximation

is the finite sum of h(x) for all singular values, which indicates that the TFR approximation

is a real analytic function. The set Φ := {X | PΩ(X) = PΩ(M)} is semi-algebraic. Thus, the

indicator function IΦ is semi-algebraic function according to Definitions 4.1 and 4.2. We

can further obtain that F(W,X) is a KŁ function since it is the finite sum of real analytic and

semi-algebraic functions.

Lemma 4.2 (Sufficient Decrease Condition). Let {Wk,Xk} be the sequence produced by Al-

gorithm 4.1. Then, we have

F(Wk,Xk)− F(Wk+1,Xk+1)≥
ρ

2
‖Wk+1−Wk‖2F +

ρ

2
‖Xk+1−Xk‖2F .

Proof. Since Xk+1 is produced by minimizing (4.5), we have

IΦ(X
k+1) +

µ

2
‖Xk+1−Wk‖2F +

ρ

2
‖Xk+1−Xk‖2F

≤ IΦ(X
k) +

µ

2
‖Xk −Wk‖2F +

ρ

2
‖Xk −Xk‖2F . (4.12)

Similarly, from (4.7), we can obtain

‖Wk+1‖TFR +
µ

2
‖Xk+1−Wk+1‖2

F
+
ρ

2
‖Wk+1−Wk‖2

F

≤ ‖Wk‖TFR +
µ

2
‖Xk+1−Wk‖2F +

ρ

2
‖Wk −Wk‖2F . (4.13)

Combining (4.12) and (4.13), we can easily get that

F(Wk,Xk)− F(Wk+1,Xk+1)≥
ρ

2
‖Wk+1−Wk‖2F +

ρ

2
‖Xk+1−Xk‖2F .

The proof is complete.
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Lemma 4.3. Assume {Wk,Xk} is the sequence produced by Algorithm 4.1. Then, we have

‖∂ F(Wk+1,Xk+1)‖F ≤ (ρ +µ)
�
‖Wk+1 −Wk‖F + ‖W

k+1−Wk‖F
�
.

Proof. According to the first-order optimal conditions, we have

0 ∈ µ(Xk+1−Wk) +ρ(Xk+1−Xk),

0 ∈ψ′(Wk+1)−µ(Xk+1−Wk+1) +ρ(Wk+1−Wk),

where ψ(W) = ‖W‖TFR. Then, we can build the following inequality:

‖∂ F(Wk+1,Xk+1)‖F

≤ ‖∂WF(Wk+1,Xk+1)−ψ′(Wk+1) +µ(Xk+1−Wk+1)−ρ(Wk+1−Wk)‖F

+ ‖∂XF(Wk+1,Xk+1)−µ(Xk+1−Wk)−ρ(Xk+1 −Xk)‖F

= ρ‖Wk+1−Wk‖F + ‖µ(W
k+1−Wk)−ρ(Xk+1−Xk)‖F

≤ (ρ +µ)
�
‖Wk+1−Wk‖F + ‖X

k+1−Xk‖F
�
.

The proof is complete.

Lemma 4.4 (Bounded Condition). Let {Wk,Xk} be the sequence produced by Algorithm 4.1.

Assuming F(W,X) → +∞ when ‖(W,X)‖F → +∞, we have the sequence {Wk,Xk} is

bounded.

Proof. Since Xk+1 is obtained by (4.6), IΦ(X
k+1) ≡ 0. According to Lemma 4.2, the

sequence {F(Wk,Xk)} is sufficiently decreased. Thus, we have 0≤ F(Wk,Xk) ≤ F(W0,X0).

According the condition F(W,X) → +∞ when ‖(W,X)‖F → +∞, we can get that the

sequence {Wk,Xk} is bounded.

Theorem 4.1. Assume that F(W,X) → +∞ when ‖(W,X)‖F → +∞. Then the sequence

{Wk,Xk} produced by Algorithm 4.1 converges to a critical point (local minimum point)

{W∗,X∗} of the function F(W,X).

Proof. According to Lemmas 4.1-4.4 and the finite length theorem — cf. [3, Theo-

rem 1], the sequence {Wk,Xk} converges to a critical point (local minimum point) {W∗,X∗}

of F(W,X).

5. Numerical Experiments

In this section, we present the results of experiments on synthetic and real data to vali-

date the effectiveness of the proposed model. The parameters of the methods employed are

fine-tuned according to the author recommendations. For the proposed method, we choose

the parametersα, b, p, andµ in the intervals [10−3, 1], [102, 105], [1.1,1.3], and [101, 104],

respectively. All calculations are carried out in Matlab (R2020a) on the same computer with
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32Gb RAM, Intel(R) Core(TM) i7-8700K CPU @3.70GHz, and NVIDIA GeForce GTX 1080.

For synthetic data, we evaluate the relative square error (RSE) as

RSE =
‖X− bX‖F
‖X‖F

,

where X is the underlying matrix and bX denotes the matrix obtained by the provided al-

gorithm. For the experiments on real data, the peak signal-to-noise ratio (PSNR) and the

structural similarity index (SSIM) [41] are utilized to give the quantitative assessment. In

all experiments of the proposed method, we set kmit = 100, ǫ = 10−8 as the termination

condition of Algorithm 4.1.

5.1. Synthetic data

To demonstrate the effectiveness of the proposed TFR approximation, we compare it

with a convex nuclear norm and two nonconvex rank approximations — i.e. logdet norm

and logarithmic norm, on the synthetic data. These convex and nonconvex rank approxima-

tions are borrowed from [5], [26], and [8], respectively. The rank r of the matrix X ∈ Rm×n

is generated by MN, where M ∈ Rm×r , and N ∈ Rr×n are randomly produced by a Gaussian

distributionN (0,1). We complete the observed matrix with respect to the matrix rank and

the sampling rate (SR). For each matrix rank and SR, the experiment is repeated ten times.

When the RSE of the test result is no more than 10−5, the test is considered successful.

Fig. 3 displays the success rate with the fixed matrix rank and SR. One can observe that

these nonconvex rank approximations indeed improve the success rate compared with the

convex approach. Among them, the TFR approximation achieves the best performance,

which further verifies the great flexibility of the TFR approximation.

5.2. Real data

In this part, we compare the proposed TFR matrix completion model with several state-

of-the-art matrix completion models including SVT [5], RegL1 [69], Top-N [26], OP [55],

LRIN [19], and LRMF [8] on the real data — i.e. on grey and color images.

5.2.1. Grey images

For grey data, we employ the methods on Monarch, Parrots, and House with the SR = 0.4,

0.6 and 0.8, respectively. The size of these images is 256 × 256. The quantitative results

are shown in Table 1. One can observe that our proposed model achieves the best per-

formance on images with different sampling rates (SRs). Although LRIN [19] can produce

a good result in quicker time, both the performance and the time metric are weaker than the

proposed method. Since these rank approximations are applied to the entire image, rank

approximations need to deal with different singular values simultaneously. Table 1 shows

that our TFR approximation is flexible when dealing with singular values and the running

time of the proposed model is less than most algorithms. Besides, Fig. 4 displays the visual
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Figure 3: The success rates of the nuclear norm [5], logdet surrogate [11], logarithmic norm [8], and
the proposed TFR approximation for synthetic data with different matrix ranks and sampling rates.
It is worth to be remarked that the yellow area represents the range of success. Clearly, the TFR
approximation is more robust.

(a) SVT (b) RegL1 (c) Top-N (d) OP (e) LRIN (f) LRMF (g) Proposed (h) GT

Figure 4: Matrix completion results on grey image Monarch and House with SR = 0.6. The first row
is the visual comparisons, and the second row is the corresponding residual images and added 0.3 for
better visualization. From left to right are the observed image, results with different methods, and the
ground truth (GT).
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Table 1: Quantitative results on grey images (Monarch, Parrots, and House) with SR = 0.4, 0.6, and
0.8, respectively. (Bold: best; Underline: second best).

Image
SR 0.4 0.6 0.8

Method PSNR SSIM Time(s) PSNR SSIM Time (s) PSNR SSIM Time (s)

Observed 8.45 0.098 − 10.19 0.160 − 13.19 0.273 −

SVT [5] 21.52 0.599 4.190 24.93 0.744 4.335 28.69 0.848 4.085

RegL1 [69] 21.78 0.623 0.657 25.98 0.813 3.806 31.88 0.934 3.416

Top-N [26] 21.52 0.619 0.936 26.30 0.816 0.737 31.77 0.931 0.280

OP [55] 21.62 0.631 4.064 25.89 0.808 3.446 31.83 0.933 2.78

LRIN [19] 21.74 0.630 1.147 25.96 0.809 0.934 31.68 0.934 1.227

LRMF [8] 22.11 0.630 1.865 26.22 0.794 1.641 30.92 0.900 2.526

Proposed 22.95 0.690 0.966 27.02 0.842 1.176 32.94 0.944 0.910

Observed 7.26 0.054 − 9.02 0.082 − 11.96 0.137 −

SVT [5] 23.85 0.687 4.451 27.09 0.794 4.344 30.30 0.862 4.049

RegL1 [69] 24.70 0.743 0.986 28.60 0.865 0.994 33.83 0.954 3.420

Top-N [26] 24.25 0.733 0.997 28.41 0.862 0.507 33.21 0.947 0.310

OP [55] 24.56 0.739 0.997 28.60 0.872 3.038 33.82 0.953 2.492

LRIN [19] 24.64 0.735 1.149 28.63 0.870 1.376 33.95 0.955 1.695

LRMF [8] 24.81 0.735 1.395 28.60 0.847 2.372 32.82 0.918 3.546

Proposed 25.37 0.772 0.930 29.47 0.887 0.965 34.31 0.962 0.882

Observed 7.10 0.045 − 8.88 0.069 − 11.88 0.116 −

SVT [5] 27.04 0.725 4.527 30.29 0.828 4.412 31.82 0.856 4.186

RegL1 [69] 27.82 0.768 0.774 32.04 0.846 0.706 36.82 0.932 1.029

Top-N [26] 27.61 0.763 1.245 31.94 0.885 0.580 36.49 0.956 0.305

OP [55] 27.45 0.768 4.301 32.85 0.906 2.992 36.97 0.960 4.015

LRIN [19] 27.62 0.766 1.270 32.89 0.903 1.610 38.52 0.967 2.171

LRMF [8] 28.31 0.778 1.993 32.55 0.862 2.193 36.27 0.929 4.601

Proposed 29.11 0.801 1.228 33.67 0.920 0.966 38.92 0.974 0.896

Ideal value +∞ 1 0 +∞ 1 0 +∞ 1 0

comparison and residual maps of different methods on Monarch and House with SR = 0.6.

It is obvious that nonconvex rank approximations have better visual results than the convex

rank approximation. These red boxes of Fig. 4 show that, compared with other approaches,

our method can preserve more details. For example, RegL1 [69] and Top-N [26] produce

some artifacts (see the red box of House). Different from the above methods, our model

can achieve a smooth result.

5.2.2. Color images

For the color images, the results on Lily, Fence, and Leaves with the SR = 0.4, 0.6, and 0.8

are shown in Table 2. The size of these images is 256 × 256 × 3. We can see that our

method obtains the best results than other convex and nonconvex rank approximations.

The visual quality comparisons of the different methods for Fence and Leaves with SR =

0.6 are shown in Fig. 5. Compared with other approaches, our method can effectively deal
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Table 2: Quantitative results on color images (Lily, Fence, and Leaves) with SR = 0.4, 0.6, and 0.8,
respectively. (Bold: best; Underline: second best).

Image
SR 0.4 0.6 0.8

Method PSNR SSIM Time(s) PSNR SSIM Time (s) PSNR SSIM Time (s)

Observed 8.59 0.128 − 10.32 0.220 − 13.55 0.243 −

SVT [5] 23.39 0.824 13.03 26.41 0.902 13.12 28.80 0.813 12.53

RegL1 [69] 23.73 0.844 5.408 27.44 0.928 5.758 32.52 0.928 10.97

Top-N [26] 23.55 0.829 2.717 27.57 0.928 1.510 32.49 0.923 0.811

OP [55] 23.62 0.843 11.84 27.39 0.927 9.679 32.49 0.928 7.928

LRIN [19] 23.69 0.626 2.721 27.42 0.803 1.857 32.48 0.926 2.830

LRMF [8] 23.57 0.822 8.140 27.13 0.915 6.715 31.81 0.896 13.64

Proposed 24.50 0.869 2.926 28.12 0.937 2.843 33.07 0.935 3.063

Observed 6.71 0.097 − 8.46 0.169 − 11.66 0.225 −

SVT [5] 24.69 0.850 12.86 27.16 0.901 12.98 28.77 0.827 24.99

RegL1 [69] 25.11 0.870 5.074 28.47 0.931 4.151 33.21 0.944 19.28

Top-N [26] 25.44 0.882 2.266 28.70 0.937 1.782 32.84 0.943 2.078

OP [55] 25.02 0.871 10.89 28.45 0.931 8.951 33.19 0.943 13.29

LRIN [19] 25.08 0.733 2.458 28.48 0.853 1.584 33.26 0.942 2.134

LRMF [8] 25.03 0.849 5.954 27.98 0.913 7.282 32.23 0.911 19.59

Proposed 25.91 0.890 2.822 29.19 0.940 3.070 33.76 0.948 4.541

Observed 4.73 0.126 − 6.48 0.221 − 9.49 0.326 −

SVT [5] 18.59 0.622 13.23 23.00 0.786 12.87 27.45 0.881 20.55

RegL1 [69] 18.66 0.629 5.159 23.38 0.804 5.545 29.33 0.937 15.22

Top-N [26] 18.47 0.641 1.965 23.53 0.805 1.863 29.33 0.926 2.380

OP [55] 18.47 0.620 12.17 23.25 0.800 9.599 29.84 0.936 12.78

LRIN [19] 18.75 0.611 4.669 23.48 0.803 2.509 30.00 0.936 1.791

LRMF [8] 18.80 0.625 9.337 23.94 0.805 8.046 30.01 0.927 18.79

Proposed 19.57 0.667 2.775 24.55 0.835 2.994 30.92 0.948 4.937

Ideal value +∞ 1 0 +∞ 1 0 +∞ 1 0

with the edges — cf. the red box in Fig. 5. More exactly, for the image Fence, we can see

that OP [55] and LRMF [8] over-smooth the edge of fence. Our method can preserve the

detail of fence well. Besides, for the running time, Top-N [26] and LRIN [19] consume less

time. However, their performance is limited. The proposed method can achieve powerful

results in less time.

5.3. Discussion

5.3.1. Rigorous comparison

In this part, we discuss the rigorous comparison of matrix completion methods, which are

run on the data at SR = 0.1-0.9. As displayed in Fig. 6, many methods vary in their ability

to handle images with different SRs. For example, LRMF [8] can achieve good results

when the SR is 0.3-0.6. OP [55] is stable for different conditions. LRIN [19] demonstrates
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(a) SVT (b) RegL1 (c) Top-N (d) OP (e) LRIN (f) LRMF (g) Proposed (h) GT

Figure 5: Matrix completion results on color image Fence and Leaves with SR = 0.6. The first row
is the visual comparisons, and the second row is the corresponding residual images and added 0.3 for
better visualization. From left to right are the observed image, results with different methods, and the
ground truth (GT).
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Figure 6: PSNR and SSIM for rigorous comparison with SRs from 0.1 to 0.9. (data: House).

strong performance according to the PSNR metric. However, its performance is notably

constrained when evaluated by using the SSIM metric. On the other hand, the proposed

method obtains the best results on the data with different SRs. The reason may be that for

different conditions — e.g. different distributions of singular values, the TFR approximation

used can flexibly shrink singular values by the appropriate parameter choice.

5.3.2. Parameter analysis

There are four main parameters in our matrix completion model, including the penalty

parameter µ and the parameters of the TFR approximation α, b, and p. We adjust one
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Figure 7: Robustness analysis (using PSNR and SSIM as metrics) for the four parameters (a) α, (b) b,
(c) p, and (d) µ. (data: House SR = 0.8).

parameter at a time, and the others are fixed. Figs. 7(a)-7(d) show the four parameter

curves on the image Parrots with the SR = 0.6. From Fig. 7, one can easily observe that the

proposed model is more robust for the parameter p than the others, and other parameters

are relatively sensitive. Thus, according the four parameter curves, we choose α = 0.1,

b = 1× 104, p = 1.1, and µ= 4× 103 in this experiment.

5.3.3. Numerical convergence analysis

In Section 4.2, we have proved the convergence of the matrix completion model with a con-

dition — i.e. F(W,X)→ +∞ when ‖(W,X)‖F → +∞ (see Theorem 4.1). In this part, we

provide numerical analysis of the proposed algorithm. To realize it, we calculate the RC —

i.e. (4.11), in each iteration of the algorithm. As shown in Fig. 8, we plot the RC curves of

the proposed model on the data with two different SRs. Experimental results demonstrate

the rapid convergence of the algorithm. Specifically, when the number of iterations exceeds

20, the RC curves basically flatten out, which means the results computed by the proposed

algorithm tend to be stable. Thus, it is sufficient to choose kmit = 100 as the termination

condition of Algorithm 4.1.
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Figure 8: The RC curves of the matrix completion model on the image House with the SR = 0.4 and
0.6, respectively.

5.3.4. Experiment on Hankel matrix completion

In this part, we test the performance of the proposed method on the low-rank approxima-

tion of the Hankel matrix. Specifically, we use the Hankel matrix H ∈ R10×10, i.e.

H =





1 1 · · · 1

1 1 0
... . .

. ...

1 0 · · · 0



 .

Following the settings of [19], the rank r approximation of the Hankel matrix H, denoted

by X, is obtained by choosing the first r components of singular value decomposition. The

index set of known entries consists of the positions where the values are positive. Table 3

shows the performance of different methods on the different rank r approximation cases.

The TNN-based method SVT [5] is not effective for these cases. The low-rank inducing

norm performs well under different rank conditions. LRMF [8] is effective only for the

low-rank case. The proposed method can achieve excellent results, particularly when the

rank is very low.

Table 3: The relative square error (RSE) performance of different methods on Hankel matrix completion.
(Bold: best; Underline: second best).

Methods r = 2 r = 4 r = 6 r = 8

SVT [5] 0.016 0.085 0,100 0.080

LRIN [19] 2.6× 10−9 1.6× 10−7 5.4× 10−7 3.1× 10−9

LRMF [8] 3.2×10−7 0.015 0.220 0.244

Proposed 6.9× 10−10 3.0× 10−4 1.7×10−3 1.4×10−3
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6. Conclusion

In this article, we explore the essence of the current nonconvex matrix rank approxi-

mations in the MRM problem, namely, narrowing the gap with ℓ0-norm. Based on observa-

tions, we propose a novel TFR approximation, which can well describe the properties of the

matrix rank and flexibly deal with the shrinkage of different singular values. Algorithm 3.1

is developed for solving TFR proximal problem of singular values. We then apply TFR ap-

proximation to matrix completion and develop Algorithm 4.1 with convergence guarantee

to solve the new matrix completion model. Extensive numerical experiments show the ad-

vantages of our model over other convex and nonconvex rank approximation-based meth-

ods. This approach provides favorable results compared with the state-of-the-art methods.

Note that the TFR approximation would be helpful in other low-level tasks, such as image

fusion [28, 51, 52, 57], image denoising [12, 32, 64], tensor completion [23], and image

inpainting [58].
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Appendix A. Proof of Theorem 2.1

Proof. Following [22], for any X ∈ Rm×n, we denote by UDV
T

the SVD of X, where

D= diag (d1, d2, · · · , dm) and d1 ≥ d2 ≥ · · · ≥ dm ≥ 0. Using the properties of the Frobenius

norm, we write

λrank(X) +
1

2
‖X− Y‖2

F

=
1

2
‖Y‖2F − Tr (YT X) +

1

2
‖X‖2F +λrank(X)

= −Tr (YT X) +
1

2

m∑

i=1

�
σ2

i + d2
i + 2λ‖di‖0
�

,

where Tr (YT X) is the trace of YT X. Then,

min
U,D,V

T

¨
−Tr (YT X) +

1

2

m∑

i=1

�
σ2

i
+ d2

i
+ 2λ‖di‖0
�
«

⇔min
D

¨
−max

U,V
T

Tr (YT X) +
1

2

m∑

i=1

�
σ2

i + d2
i + 2λ‖di‖0
�
«

.

Based on von Neumanns trace inequality [14], it is obvious that Tr (YT X) achieves its upper

bound
∑m

i=1
(σidi) if U= U and V = V. Consequently,
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min
D

1

2

m∑

i=1

�
σ2

i
− 2σidi + d2

i

�
+λ‖di‖0⇔ min

d1,d2,··· ,dm

1

2

m∑

i=1

(σi − di)
2 +λ‖di‖0

s.t. d1 ≥ d2 ≥ · · · ≥ dm ≥ 0.

From the above derivation, the optimal solution of (2.1) is Udiag (d̂1, d̂2, · · · , d̂m)V
T , where

(d̂1, d̂2, · · · , d̂m) is the solution to (2.2).

Appendix B. Proof of Theorem 3.2

Proof. Let G
y

1
(x) = y − x and G2(x) = λ∇h(x) be two functions defined on [0,+∞].

The properties of h(x) are related to the value of p. We prove the theorem in two cases.

Case 1. p 6= 1. Let

y = sup
�

y | G
y

1
(x)∩ G2(x) = ;

	
,

and

x
y

2
= inf
�

x |(x ,q) be the intersection point of G
y

1
(x) and G2(x)

	
.

When y > y , there are two intersection points between G
y

1
(x) and G2(x), denoted as

(x
y

1
,q

y

1
) and (x

y

2
,q

y

2
), where x

y

2
> x

y

1
. Since in this case,

∇h(x) =
pb

αx1−p(1/α+ x p)2
,

we note that G2(0) = +∞.

First, we consider y ≤ y . According to the definition of y , there at most one intersection

point of G
y

1
(x) and G2(x). We have

∇ f y(x) = G2(x)− G
y

1
(x)≥ 0.

Therefore, the global minimum of f y(x) is the value at x = 0.

Second, we consider y > y . Then there are two intersection points of G
y

1
(x) and G2(x)

and two conditions — viz.

(i) If there exists y > y such that f y(0) = f y(x
y

2
), denote

y∗ = inf
�

y | y > y , f y (0) = f y

�
x

y

2

�	
.

When y > y∗, let y = y∗ + ε for some ε > 0. We have

f y

�
x

y∗

2

�
− f y(0) =

1

2

�
x

y∗

2
− y∗ − ε
�2
+λh
�

x
y∗

2

�
−

1

2
(y∗ + ε)2

=
1

2

�
x

y∗

2
− y∗
�2
−

1

2
(y∗)2 − εx

y∗

2
+λh
�

x
y∗

2

�
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= f y∗

�
x

y∗

2

�
− f y∗(0)− εx

y∗

2

= −εx
y∗

2
< 0.

Because f y is decreasing on [x
y∗

2
, x

y

2
], we have

f y(0) > f y

�
x

y∗

2

�
≥ f y

�
x

y

2

�
.

Hence, if y > y∗, then f y (x
y

2
) is the global minimum of f y(x). When y < y ≤ y∗, we

prove that f y(0) ≤ f y(x
y

2
) by contradiction. Suppose that there exists y0 such that

y < y0 < y∗ and f y0(0)> f y0(x
y0

2
). Since f y is strictly increasing on (0, x

y

2
), we have

f y(x
y

2
)> f y(0). Since

f y

�
x

y

2

�
> f y(0),

f y0

�
x

y0

2

�
< f y0(0),

we have

λh
�

x
y

2

�
−λx

y

2
∇h
�

x
y

2

�
−

1

2

�
x

y

2

�2
> 0,

λh
�

x
y0

2

�
−λx

y0

2
∇h
�

x
y0

2

�
−

1

2

�
x

y0

2

�2
< 0.

According to the intermediate value theorem, there exists ex such that x
y

2
< ex < x

y0

2

and

λh(ex)−λex∇h(ex)− 1

2
(ex)2 = 0.

Let ey = λ∇h(ex)+ ex . Note that (ex , ey− ex) is the intersection point of G
ey
1
(x) and G2(x)

such that fey(ex) = fey(0). Since x
y

2
< ex < x

y0

2
and ∇h is convex and nonincreasing,

we get that y < ey < y0 < y∗, which contradicts the minimality of y∗.

(ii) Since f y is increasing on (0, x
y

2
), we have f y (x

y

2
) > f y(0). We now show that f y (x

y

2
)≥

f y(0) for all y > y . Suppose this is not true, and there exists y such that y > y and

f y(x
y

2
)< f y(0). It follows from the relations

f y

�
x

y

2

�
> f y(0),

f y

�
x

y

2

�
< f y(0),

that

λh
�

x
y

2

�
−λx

y

2
∇h
�

x
y

2

�
−

1

2

�
x

y

2

�2
> 0,

λh
�
x

y

2

�
−λx

y

2
∇h
�
x

y

2

�
−

1

2

�
x

y

2

�2
< 0.
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Therefore, by the intermediate value theorem, there exists ex such that x
y

2
< ex < x

y

2

and

λh(ex)−λex∇h(ex)− 1

2
(ex)2 = 0.

Let ey = λ∇h(ex)+ ex . Note that (ex , ey− ex) is the intersection point of G
ey
1
(x) and G2(x)

such that fey (ex) = fey (0). Since x
y

2
< ex < x

y

2
and ∇h is convex and nonincreasing,

we get that y < ey < y, which contradicts f y(0) 6= f y(x
y

2
) for all y > y . Thus, for

all y > y , 0 is the minimum of f y(x) on [0, y]. Similarly, when y ≤ y , we have

∇ f y(x) = G2(x)− G
y

1
(x) ≥ 0. Hence, the global minimum of f y(x) is the value at

x = 0.

Case 2. p = 1. In this case, G2(0) < +∞. We think about the following two conditions:

(i) Suppose that

G
λ∇h(0)

1
(x) = λ∇h(0)− x ≤ λ∇h(x)

for all x on (0,λ∇h(0)). For all y ≤ λ∇h(0), we have ∇ f y(x) = G2(x)−G
y

1
(x)≥ 0. Thus,

when y ≤ λ∇h(0), the minimum point of f y(x) is f y(0). For all y > λ∇h(0), G
y

1
(x) = y−x

and G2(x) have only one intersection point denoted as (x y ,q y). Then, f y is decreasing on

(0, x y) and increasing on (x y , y). Hence, when y > λ∇h(0), the minimum of f y (x) is the

value at x = x y .

(ii) Suppose there exists 0< x̂ < λ∇h(0) such that

G
λ∇h(0)

1
( x̂) = λ∇h(0)− x > λ∇h( x̂).

Then, G
y

1
(x) = y − x and G2(x) have two intersection points — i.e. (0,λ∇h(0)) and

(x
λ∇h(0)
2

,q
λ∇h(0)
2

). Note that fλ∇h(0) is strictly decreasing on (0, x
λ∇h(0)
2

), we have

fλ∇h(0)

�
x
λ∇h(0)

2

�
< fλ∇h(0)(0).

Also, we denote

y = sup
�

y | G
y

1
(x)∩ G2(x) = ;

	
.

Since f y is strictly increasing on (0, x
y

2
), we have f y(x

y

2
) > f y(0). Since

f y

�
x

y

2

�
> f y(0),

fλ∇h(0)

�
x
λ∇h(0)

2

�
< fλ∇h(0)(0),

we have

λh
�

x
y

2

�
− x

y

2
λ∇h
�

x
y

2

�
−

1

2

�
x

y

2

�2
> 0,

λh
�

x
λ∇h(0)

2

�
− x

λ∇h(0)

2
λ∇h
�

x
λ∇h(0)

2

�
−

1

2

�
x
λ∇h(0)

2

�2
< 0.
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By the intermediate value theorem, there exists ex such that x
y

2
< ex < x

λ∇h(0)
2

and

λh(ex)− exλ∇h(ex)− 1

2
(ex)2 = 0.

Let ey = λ∇h(ex)+ ex . Note that (ex , ey − ex) is the intersection point of G
ey
1
(x) and G2(x) such

that fey (ex) = fey(0). Since x
y

2
< ex < x

λ∇h(0)

2
and ∇h is convex and nonincreasing, we get

that y < ey < λ∇h(0). Next, we set

y∗ = inf
�

y | y < y < λ∇h(0), f y(0) = f y

�
x

y

2

�	
.

Given y < y ≤ λ∇h(0), we can see that f y is increasing on (0, x
y

1
), decreasing on (x

y

1
, x

y

2
)

and increasing on (x
y

2
, y). Thus, 0 and x

y

2
are two local minimum points of f y(x) on [0, y].

Next, for y∗ < y ≤ λ∇h(0), let y = y∗ + ε for some ε > 0. We have

f y

�
x

y∗

2

�
− f y(0) =

1

2

�
x

y∗

2
− y∗ − ε
�2
+λh
�

x
y∗

2

�
−

1

2
(y∗ + ε)2

=
1

2

�
x

y∗

2
− y∗
�2
−

1

2
(y∗)2 − εx

y∗

2
+λh
�

x
y∗

2

�

= f y∗

�
x

y∗

2

�
− f y∗(0)− εx

y∗

2

= −εx
y∗

2
< 0.

Because f y is decreasing on (x
y∗

2
, x

y

2
), we have f y (0) > f y (x

y∗

2
) ≥ f y (x

y

2
). Thus, when

y > y∗, f y(x
y

2
) is the global minimum of f y(x). Then for all y < y ≤ y∗, we prove

f y(0) ≤ f y (x
y

2
) by contradiction. We suppose there exists y such that f y (0) > f y(x

y

2
). It

follows from

f y

�
x

y

2

�
> f y(0),

f y

�
x

y

2

�
< f y(0),

that

λh
�

x
y

2

�
− x

y

2
λ∇h
�

x
y

2

�
−

1

2

�
x

y

2

�2
> 0,

λh
�
x

y

2

�
− x

y

2
λ∇h
�
x

y

2

�
−

1

2

�
x

y

2

�2
< 0.

By the intermediate value theorem, there exists ex such that x
y

2
< ex < x

y

2
and

λh(ex)− exλ∇h(ex)− 1

2
(ex)2 = 0.

Let ey = λ∇h(ex) + ex . (ex , ey − ex) is the intersection point of G
ey
1
(x) and G2(x) such that

fey(ex) = fey (0). Since x
y

2
< ex < x

y

2
and ∇h is convex and nonincreasing, we get that

y < ey < y ≤ y∗, which contradicts the minimality of y∗.
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If y ≤ y , we have

∇ f y(x) = G2(x)− G
y

1
(x)≥ 0,

so the global minimum point of f y(x) on [0, y] is 0. Also, when y > λ∇h(0), G
y

1
= y − x

and G2(x) have only one intersection point (x y ,q y). Then, we can get that f y is decreasing

on (0, x y) and increasing on (x y , y). Thus, the global minimum point of f y(x) is x y .

The above considerations show that the solution of Proxh(y) is the largest intersection

point of G
y

1
(x) and G2(x)— i.e.

x̂ y =max
�

x | ∇ f y(x) = 0,0≤ x ≤ y
	
,

when y is larger than a certain threshold. For other choices of y, 0 ∈ Proxh(y). It can be

seen that we only need to compute the largest local minimum x̂ y and compare the values

of the objective function f y(x) at 0 and x̂ y .

Matlab Code. The code is available at https://github.com/Jin-liangXiao/TFR_code
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