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Abstract— Pansharpening is related to the fusion of a low
spatial resolution multispectral (MS) image retaining an abun-
dant spectral content and a high spatial resolution panchro-
matic (PAN) image to obtain a product with both the abundant
spectral content of the former and the high spatial resolution of
the latter. Many previous studies are only focused on the global or
local relationship between the PAN image and the corresponding
high-resolution multispectral (HRMS) image. However, we found
that the relationship between PAN and HRMS images in the
gradient domain can be better explored through the image
context. In this article, we propose context-aware details injection
fidelity (CDIF) with adaptive coefficients estimation, which can
fully explore the complicated relationship between the PAN image
and the HRMS image in the gradient domain. More specifically,
we apply a clustering method to divide the pixels of an image
into different context-based regions. Afterward, the adaptive
coefficients are estimated by using a regression-based method
for each region. The CDIF is effective in extracting the main
features from the two inputs to be fused. In addition, we integrate
the CDIF with a conventional fidelity term and a total variation
regularization to formulate a novel variational pansharpening
model that is solved by designing an algorithm based on the
alternating direction method of multiplier (ADMM) framework.
Qualitative and quantitative assessments on different datasets
support the effectiveness and robustness of the proposed method.
The code is available at https://github.com/liangjiandeng/CDIF.

Index Terms— Adaptive coefficients, context-aware fidelity,
image fusion, pansharpening, remote sensing, variational models.

NOMENCLATURE

X , X, x, and x Tensor, matrix, vector, and scalar.
X ∈ R

H×W×S HRMS image.
X ∈ R

S×H W Mode-3 unfolding of X .
Xi ∈ R

H×W i th band of the HRMS image X .
Y ∈ R

h×w×S MS image.
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Y ∈ R
S×hw Mode-3 unfolding of the MS image

Y .
P ∈ R

H×W PAN image.
P ∈ R

H×W×S Extended PAN image, P, with S
bands.

P ∈ R
S×H W Mode-3 unfolding of the extended

PAN image.
G ∈ R

S×2H W Adaptive coefficient.
◦ Hadamard product.
� Elementwise division.
∇i , i = 1, 2, 3 Gradient operation along the i th

direction.

∇ =
�∇1

∇2

�
Gradient operation along the spatial
directions.

∇X ∈ R
2H×W×S X in the gradient domain.

∇X ∈ R
S×2H W Mode-3 unfolding of ∇X .

I. INTRODUCTION

REMOTE sensing has several applications, such as detec-
tion, analysis, and forecasting. Satellites, e.g., IKONOS,

QuickBird, WorldView-2, Pléiades, and WorldView-3, acquire
more information. However, because of hardware limitations,
we can design acquisition sensors with only one high reso-
lution, usually penalizing the others. Thus, high spatial reso-
lution panchromatic (PAN) images can be acquired together
with data showing a greater focus on the spectral resolution
as low spatial resolution multispectral (MS) images [1]. The
goal of pansharpening (which stands for PAN sharpening) is
to fuse the abovementioned pairs to obtain high-resolution
multispectral (HRMS) images.

A. Related Works

Pansharpening methods can be roughly divided into four
classes [2]–[4], i.e., component substitution (CS) methods,
multiresolution analysis (MRA) approaches, machine learn-
ing (ML) techniques, and variational optimization (VO)-based
methods. More details about the abovementioned categories
can be found in [1].

The CS methods, commonly considered classic approaches
for pansharpening, are based on the substitution of one or more
components after applying a reversible spectral transformation.
This latter is applied to the MS image with the aim of
separating the spatial and spectral information. The spatial
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information is substituted with the PAN image to enhance
the spatial resolution of the MS image. Some instances of
these approaches are the Brovey transform [5], the principal
component analysis (PCA) [6], the intensity–hue–saturation
(IHS) [7], the Gram–Schmidt (GS) spectral sharpening [8], the
partial replacement adaptive CS (PRACS) [9], and the band-
dependent spatial detail (BDSD) [10] methods. For these tech-
niques, the tradeoff between spatial and spectral distortions is
impossible to be overcome. Thus, CS methods have a good
spatial fidelity but paying it with a greater spectral distortion.

The MRA methods rely upon the injection of spatial details
extracted from the PAN image into the MS image. Unlike
CS methods, they can preserve spectral information but caus-
ing (usually evident) spatial distortions. Spatial details can
be extracted from different decomposition methods. Some
instances of approaches in the MRA class are the smoothing
filter-based intensity modulation (SFIM) [11], the decimated
wavelet transform (DWT) [12], the undecimated wavelet
transform (UDWT) [13], the “à-trous” wavelet transform
(ATWT) [14], the generalized Laplacian pyramid (GLP) [15],
and some methods, i.e., [16] and [17], which propose strategies
to extract details in an accurate way.

ML approaches have recently achieved great success in
several image processing fields, including pansharpening
[18]–[25]. Many ML methods for pansharpening, e.g.,
[26]–[30], have a strong ability in feature extraction. Hence,
the relationship among MS, PAN, and HRMS images can be
well-expressed by these methodologies. However, the other
side of the coin is represented by: 1) the need for training data
and computing resources; 2) a lack of robustness with respect
to the changes of acquisition sensors and scenarios under
analysis; and 3) the assumption usually made by these methods
imposing that the relationship among MS, PAN, and HRMS
images learned at reduced resolution is the same as that of at
full resolution. Thus, the effectiveness of these approaches in
addressing operative scenarios is often compromised. Besides,
some advanced ML techniques, e.g., the graph convolutional
network (GCN) [31] and SpectralFormer [32], showed their
potentialities in hyperspectral image processing [33]. These
techniques can effectively extract feature information. How-
ever, their validity for the pansharpening problem needs to be
explored and verified.

In recent years, VO methods have become more popular
due to their flexibility [34]. They can show a good ability
in modeling the relationship among MS, PAN, and HRMS
images. Ballester et al. [35] assumed that the PAN image
is a linear combination of the different bands of the HRMS
image, thus proposing the P+XS model. In this category,
we can express the connections among MS, PAN, and HRMS
in several domains. For example, Deng et al. [36] built the
model based on reproducible kernels in the Hilbert space,
Fu et al. [37] proposed a VO model based on a local gradient
constraint (LGC), and Zhuang et al. [38] used gradient domain
guided image filtering for both preserving image structures and
suppressing artifacts and noise. Moreover, the use of different
norms is sometimes considered. For instance, Deng et al. [39]
proposed a pansharpening model with a hyper-Laplacian prior
using an �p (0 < p < 1) norm to describe the relationship

between the HRMS image and the upsampled MS image in
the gradient domain [40]; instead, Wu et al. [41] applied an
�2,1 norm to constrain the HRMS image and the PAN image in
the gradient domain, again. VO methods can improve spatial
information of the original MS image without affecting the
spectral content by solving optimization problems. However,
the definition of appropriated fidelity terms is a hard task,
resulting in a reduction of the performance when this operation
is not properly performed.

B. Contributions

A context-aware details injection fidelity (CDIF) with adap-
tive coefficients estimation is proposed in this article to obtain
spatial structure features from the PAN image. The CDIF
describes the relationship between PAN and HRMS images
in the gradient domain. Unlike local and global approaches,
we explore the relationship based on the image context.
This latter can be drawn in an accurate way (please see
Section V-E3 for more details). The PAN image retains more
spatial information than the original MS image. Thus, the
CDIF can obtain this spatial information from the PAN image
due to the exploitation of a context-based approach.

On the above basis, we integrate the proposed CDIF with
two conventional fidelity and regularization terms to formulate
a novel variational pansharpening model. The framework of
the proposed model is shown in Fig. 1. Moreover, we design
an algorithm that is based on the alternating direction method
of multiplier (ADMM) [42] framework to effectively solve
the proposed model. In our experiments, we compare this
approach with some state-of-the-art methods on data acquired
by different satellites, e.g., IKONOS, QuickBird, Pléiades,
WorldView-2, and WorldView-3. The proposed model has
shown good performance when applied to different satellite
data getting remarkable robustness.

The contributions of this article are summarized as follows.

1) We propose a CDIF that can draw the context-aware
relationship between PAN and HRMS images with adap-
tive coefficients estimation.

2) A variational model, including the proposed CDIF and
two conventional fidelity and regularization terms, is for-
mulated for the task of remote sensing pansharpening.
Moreover, an ADMM-based algorithm is designed to
effectively solve the proposed model.

3) Extensive experiments on several reduced and
full-resolution datasets demonstrate the superiority
of the proposed approach compared with recent
state-of-the-art pansharpening techniques.

C. Organization

The rest of this article is organized as follows. Section II
briefly introduces the notation and the motivations behind this
work. In Section III, we give an interpretation of the proposed
model. The algorithm designed to solve the proposed model is
described in Section IV. Instead, Section V is devoted to the
experimental results with a particular emphasis on analyzing
the parameters and discussing some details about the proposed
method. Finally, concluding remarks are drawn in Section VI.
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Fig. 1. Framework of our model. The details of our framework can be found in Section III.

II. NOTATION AND MOTIVATIONS

The notation is summarized in the Nomenclature. Instead,
the motivations behind this work are introduced in the
following.

A. Motivations
A widely used assumption performed in the literature is

that the PAN image and the HRMS image share common
spatial structures. Starting from this consideration, spatial
structures are extracted from the PAN image using several
methodologies. Many previous works consider the relationship
between the PAN and the HRMS images in a direct way. For
instance, the P+XS method [35] assumes that the PAN image
is the weighted sum of the HRMS bands. However, this direct
approach can lead to a reduction of the overall accuracy of the
approach. Thus, we propose to extract the spatial information
from the PAN image but working in the gradient domain.
Information in the gradient domain has demonstrated its
usefulness for low-level vision tasks, including pansharpening,
since it can describe, in a better way, dominant image struc-
tures to represent crucial image features. As shown in Fig. 2,
it is evident that the PAN image approximates, in a better
way, the HRMS bands in the gradient domain with respect to
the original intensity domain. Hence, we can obtain spatial
features in an easier way working in the gradient domain
than the original one. This cue motivates us to explore the
relationship between PAN and HRMS images in the gradient
domain, unlike what is usually proposed in the literature.

Many previous methods are focused on the global or local
relationship between the PAN image and the HRMS image.
For instance, Wu et al. [41] consider a global relationship;
instead, Fu et al. [37] investigate on a local linear relationship
among image patches. However, global and local relationships
are not generally enough to accurately describe the complex
relationship between the two input data [see Fig. 2(b)], where
the relationship between each band of the HRMS image
and the PAN image is pixel-dependent. Thus, in this article,

Fig. 2. (a) Plot of the intensity for both the PAN image and the HRMS data
randomly choosing a row of the image. (b) Plot of the gradient intensity for
both the PAN image and the HRMS data considering blue (B), green (G), red
(R), and near-infrared (NIR) bands for the same row as in (a). It is worth to
be remarked that the behavior of PAN and HRMS images is more similar in
the gradient domain than in the intensity domain.

we propose a context-aware method for the following reasons.
First, we found that the relationship between PAN and HRMS
images in the gradient domain is closely related to the image
context. To corroborate it, we chose a reduced resolution
dataset to calculate the coefficients related to the HRMS
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Fig. 3. (a) HRMS image. (b) Clustering of the coefficients related to the
HRMS image in (a).

Fig. 4. (a) Close-up of the HRMS image of the Pléiades dataset. (b) Context-
aware regions extracted from (a). (c) Scatter plot of ∇1X1 and ∇1P for pixels
belonging to Class 1 in (b). (d) Histogram of ∇1X1�∇1P for pixels belonging
to Class 1 in (b). It is worth to be remarked that the distribution of ∇1X1 and
∇1P is well described by a directly proportional function, i.e., the black dotted
line in (c). For other regions and bands, there is a similar directly proportional
relationship between HRMS and PAN images in the gradient domain. Thus,
the values of ∇X � ∇P are approximately the same inside each region and
each band.

and the PAN images in the gradient domain. Afterward,
we clustered them. As shown in Fig. 3, there is a remarkable
similarity between the clustered results and the image context
in the original data. Second, a simple linear model can be
exploited in this case to describe the relationship between
each band of the HRMS image and the PAN image. Indeed,
as shown in Fig. 4(c) and (d), the relationship between the PAN
image and the HRMS image is approximately linear inside
the same context-aware region. Therefore, the abovementioned
observations motivate us to formulate the CDIF.

III. PROPOSED MODEL

A. Spectral Fidelity Term

Many previous methods directly upsample the MS image
to obtain the same size image as the PAN image [43]. Thus,
a fidelity term is built based on the upsampled version of the

MS image and the PAN image. However, the spectral content
obtained by exploiting this fidelity term is often inaccurate.
For this reason, we consider a different spectral fidelity term
relied upon the following model:

XBS = Y + ξ1 (1)

where B ∈ R
H W×H W denotes a blurring matrix, S ∈

R
H W×H W represents the decimation operation, and ξ1 indicates

a zero-mean Gaussian noise. The blur operation is equivalent
to the convolution of the HRMS image with the point spread
function (PSF) of the MS sensor [44], [45]. According to (1),
the spectral fidelity term can be expressed as

fspec = �XBS − Y�2
F (2)

where � · �F is the Frobenius norm.

B. Proposed Context-Aware Details Injection Fidelity
For the pansharpening problem, fidelity terms are at the

basis of each model extracting spatial and spectral information
from the two inputs, i.e., the PAN and MS images. Many
previous methods, e.g., [37] and [40], prefer exploring the
global or local relationship between PAN and HRMS images in
the gradient domain. However, we found that the relationship
between PAN and HRMS images in the gradient domain can
be better described in a context-aware manner (see Figs. 3
and 4). Therefore, we assume that

∇X = G ◦ ∇P + ξ2 (3)

where ∇ denotes the gradient operation along the two spatial
directions, ∇X ∈ R

S×2H W stands for the mode-3 unfolding of
∇X , G ∈ R

S×2H W represents the adaptive coefficients whose
estimation is related to the image context, P is the mode-3
unfolding of the extended PAN image (obtained by duplicating
P along the spectral direction), ◦ indicates the Hadamard
product, and ξ2 is a zero-mean Gaussian noise. Hence, the
CDIF is described by the following equation:

fCDIF = ��∇X − G ◦ ∇P
��2

F
. (4)

The CDIF with adaptive coefficients estimation is effective
in extracting the features from the two inputs of the fusion
process.

However, we cannot directly calculate G by (3) because the
HRMS image, X, is what we want to find. Thus, the adaptive
coefficients G cannot be directly obtained by the following
relationship:

G = ∇X � ∇P. (5)

To address this problem, we can exploit the MS image, Y,
which is instead known. We use an upsampling operation to
simulate the inverse operation of the decimation operation, S,
and thus, we have that

XB ≈ �Y = Φ(Y) (6)

where �Y denotes the mode-3 unfolding of the upsampled
version of the MS image and Φ(·) is the upsampling func-
tion implemented by considering a polynomial interpolator
with 23 coefficients [46], commonly exploiting for pansharp-
ening [2], [47]. Thus, the original relationship in (3) can
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Algorithm 1 Estimation of the Adaptive Coefficients G

Input: The upsampled version of the MS image, �Y, the
extended PAN image, P, the number of clusters, k.

1: Calculate XB via (6).
2: Calculate PB via (8).
3: for j = 1 → k do
4: Calculate g j via (10).
5: end for

Output: G collects g j for all the regions j .

be reported at reduced resolution considering the classical
hypothesis performed in developing pansharpening algorithms,
that is, the “invariance among scales.” Thus, we approximately
have that

∇(XB) ≈ G ◦ ∇�PB
�

(7)

where

PB = MTF
�
P
�

(8)

and MTF(·) is a Gaussian filter matched with the modulation
transfer function (MTF) of the PAN image [2], [46], [48].

G links the PAN image and the HRMS image. To estimate
it, we search for similar pixels’ locations using a clustering
method, i.e., the k-means clustering algorithm. The k-means
approach needs to set the value of k (i.e., the number of clus-
ters). To balance the computational burden and the clustering
accuracy of the k-means algorithm, we set k to 5. Thus, all
the pixels in the image are divided into k regions denoted by
ω j , j = 1, 2, . . . , k. As shown in Fig. 4(c), the values of the
coefficients ∇X�∇P are approximately the same inside each
region and for each band, which indicates that G should have
values around 1 considering (3). Accordingly, we have that

g j ◦ c(n) = d(n) ∀n ∈ ω j (9)

where c(n) and d(n) are the pixels of ∇(PB) and ∇(XB),
respectively, inside region j , and g j denotes the adaptive
coefficients for the j th region, i.e., G evaluated for the j th
region. The overdetermined equation (9) holds for all the
pixels n belonging to the j th region, ω j . The regression-based
method, i.e., the ordinary least-squares, is selected to solve
(9) for each spectral band. Therefore, we can estimate g j ,
as follows:

g j = Reg
��

d(n), c(n)
	

n∈ω j

�
(10)

where Reg(·, ·) denotes the ordinary least-squares regression
using the inputs d(n) and c(n) for all n ∈ ω j and separately
applying it to all the spectral bands, thus estimating the
coefficients of the vector g j [49].

Finally, G is obtained by collecting g j (defined in (10))
for all the regions j . The adaptive coefficient process is
summarized in Algorithm 1.

C. Total Variation Regularization

The total variation (TV) regularization is a conventional
regularization term in the field of image processing [50]. This
regularization can keep the piecewise constant of the result.

The anisotropic TV regularization at pixel (i, j, k) is defined
as follows:

�∇1X (i, j, k)�1 = �X (i + 1, j, k) − X (i, j, k)�1

�∇2X (i, j, k)�1 = �X (i, j + 1, k) − X (i, j, k)�1

�∇3X (i, j, k)�1 = �X (i, j, k + 1) − X (i, j, k)�1. (11)

We apply TV regularization to describe the properties of the
HRMS images, i.e., the piecewise constant and the sparsity in
the gradient domain. The TV regularization term is given as
follows:

fTV = β1�∇1X�1 + β2�∇2X�1 + β3�∇3X�1 (12)

where ∇i X is the mode-3 unfolding of ∇iX , and β1, β2, and
β3 are positive parameters.

D. Proposed Model

Combining the abovementioned terms, the final model can
be expressed as

min
X

�XBS − Y�2
F + λ

��∇X − G ◦ ∇P
��2

F

+β1�∇1X�1 + β2�∇2X�1 + β3�∇3X�1. (13)

This model is convex, but the direct calculation requires a huge
computational burden. Thus, we designed an algorithm based
on the ADMM [42] framework.

IV. PROPOSED ALGORITHM

The ADMM [42] framework is one of the widely used
methods to solve structured convex optimization problems.
We designed a fast and effective ADMM-based algorithm
to solve the proposed model. Let us introduce the auxiliary
variables U, H1, H2, and H3, where U = XB, H1 = ∇1X,
H2 = ∇2X, and H3 = ∇3X. The optimization model can be
reconstructed as

min
X,U,H1,H2,H3

�US − Y�2
F + λ

��∇X − G ◦ ∇P
��2

F

+β1�H1�1 + β2�H2�1 + β3�H3�1

s.t . U = XB, H1 = ∇1X

H2 = ∇2X, H3 = ∇3X. (14)

Thus, the augmented Lagrangian function is given as follows:
L = �US − Y�2

F + λ
��∇X − G ◦ ∇P

��2

F

+η1

2

����XB − U + 	1

η1

����2

F

+β1�H1�1 + β2�H2�1 + β3�H3�1

+η2

2

����∇1X − H1 + 	2

η2

����2

F

+η3

2

����∇2X − H2 + 	3

η3

����2

F

+η4

2

����∇3X − H3 + 	4

η4

����2

F

+ const (15)

where 	1, 	2, 	3, and 	4 represent the Lagrange multipliers,
and const denotes a constant that is independent of the
variables U, X, and Hi , i = 1, 2, 3. The optimization problem
is solved by dealing with five subproblems. Each subproblem
is solved by minimizing one variable under the condition that
the others are fixed.
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Fig. 5. Graphic representation of (22) for a scale ratio equal to 4. The white
squares with a blank content indicate zero values. The first row shows the
processing from U to USST, which is equal to an elementwise multiplication
between DSST and U, i.e., the second row. It is worth noting that DSST is
produced from sparse matrices (i.e., the blue squares), whose entries are 1 only
in one position [44].

A. X-Subproblem

According to (15), the X-subproblem is expressed as the
following optimization problem:

min
X

λ
��∇X − G ◦ ∇P

��2

F
+ η1

2

����XB − U + 	1

η1

����2

F

+η2

2

����∇1X − H1 + 	2

η2

����2

F

+ η3

2

����∇2X − H2 + 	3

η3

����2

F

+η4

2

����∇3X − H3 + 	4

η4

����2

F

. (16)

There are only Frobenius norms in the optimization model
above. Thus, it can be solved by the fast Fourier trans-
form (FFT) algorithm under the periodic boundary condition

Xk+1 := F−1



F�Wk + Qk

�
F(O)

�
(17)

with

Wk = 2λ∇T
�
G ◦ ∇P

�+ η1UkBT +
4�

i=2

�
ηi∇T

i−1Hk
i−1

�
(18)

Qk = −	1
kBT −

4�
i=2

�∇T
i−1	

k
i

�
(19)

O = 2λ∇T∇ + η1BBT +
4�

i=2

ηi∇T
i−1∇i−1 (20)

where F(·) and F−1(·) denote the fast Fourier transform and
its inverse transformation, respectively, (·)T is the transpose
operator, and the division is elementwise.

B. U-Subproblem

The U-subproblem is given as follows:

min
U

�US − Y�2
F + η1

2

����XB − U + 	1

η1

����2

F

. (21)

Algorithm 2 ADMM-Based Solver for the Proposed Pan-
sharpening Model (13)

Input: The MS image, Y, the extended PAN image, P, the
adaptive coefficients, G, λ, β1, β2, β3, η1, η2, η3, η4, r ,
kmit, and ε.

Initialization: X0 = �(Y, r), U0 = 	0
1 = 0, H0

1 = H0
2 =

H0
3 = 	0

2 = 	0
3 = 	0

4 = 0, k = 0
1: while k < kmit and RelCha > ε do
2: Update Xk+1 via (17).
3: Update Uk+1 via (23).
4: Update Hk+1

i via (25), i=1,2,3.
5: Update Lagrange multiplier 	k+1

j via (26), j=1,2,3,4.
6: k = k + 1.
7: end while

Output: The fused HRMS image X

The solution to this optimization problem relies on handling
the decimation operation, S. USST can be seen as an elemen-
twise multiplication DSST on U

USST = U ◦ DSST (22)

as shown in Fig. 5 [44]. Thus, the method based on the
elementwise division can efficiently solve the U-subproblem

Uk+1 := 2YST + η1Xk+1B + 	1
k

2DSST + η11
. (23)

C. Hi -Subproblem

For Hi -subproblems, the optimization problem can be for-
malized as follows:

min
Hi

ηi+1

2

����∇i X − Hi + 	i+1

ηi+1

����2

F

+ βi�Hi�1. (24)

The above problem can be solved by the soft-thresholding
strategy [51]. Thus, we have that

Hk+1
i = Soft


Xk+1 + 	k

i+1

ηi+1
,

βi

ηi+1

�
(25)

where Soft(a, b) := sign(a) · max(|a| − b, 0), i = 1, 2, 3.

D. Updating Multipliers

Finally, the multipliers 	1, 	2, 	3, and 	4 are updated as
follows:⎛⎜⎜⎜⎝

	k+1
1

	k+1
2

	k+1
3

	k+1
4

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
	k

1

	k
2

	k
3

	k
4

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
η1
�
Xk+1B − Uk+1

�
η2
�∇1Xk+1 − Hk+1

1

�
η3
�∇2Xk+1 − Hk+1

2

�
η4
�∇3Xk+1 − Hk+1

3

�
⎞⎟⎟⎟⎠. (26)

The reconstructed model, i.e., (14), is convex for each vari-
able satisfying the hypotheses under the convergence theorem
in [42]. Therefore, the convergence of the whole algorithm
can be guaranteed. The relative change (RelCha) and the
number of iterations are used as termination conditions of the
algorithm. The RelCha is defined as

RelCha = ��Xk+1 − Xk
��

F
/
��Xk

��
F
. (27)
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Fig. 6. Fusion results with close-ups for the compared approaches on the four-band Pléiades dataset at reduced resolution (size of the PAN image:
256×256). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60], (g) PNN [19],
(h) TPNN [61], (i) proposed method, and (j) ground-truth (GT). Residual images for the displayed red band: (k) PRACS [9], (l) RBDSD [49], (m) C-GLP [59],
(n) GLP-Reg-FS [43], (o) LGC [37], (p) HQBP [60], (q) PNN [19], (r) TPNN [61], (s) proposed, and (t) GT.

The whole optimization algorithm can be summarized in
Algorithm 2, where kmit denotes the maximum iteration, r is
the scale ratio between MS and PAN images, ε is a tolerance
value, and � denotes the bicubic interpolation.

V. EXPERIMENTAL RESULTS

This section is devoted to the demonstration of the effec-
tiveness of the proposed algorithm. We compare the proposed
method with some state-of-the-art methods on data coming
from different sensors, i.e., IKONOS, QuickBird, Pléiades,
WorldView-2, and WorldView-3. To make the experimen-
tal analysis more representative, we chose methods from
different pansharpening classes. Two assessment procedures,
i.e., at reduced resolution and at full resolution, are con-
sidered in this article to show the high performance of
the proposed approach. All the methods in the benchmark
are run on the same software and hardware platforms, i.e.,
MATLAB (R2016b), a computer of 16-Gb RAM with AMD
Ryzen7-4800H, NVIDIA GeForce GTX 1650, and Radeon

Graphics 2.90 GHz. The procedure to adjust the parameters is
also described in this section together with an ablation study
in Section V-E, even comparing the proposed approach with
the direct estimation and the equivalent methodology based on
patches. It is worth to be remarked that kmit, r , and ε are set
to 100, 4, and 2 × 10−5, respectively, in all the experiments.

A. Quality Metrics

There are many metrics to quantitatively measure the per-
formance at reduced resolution and full resolution. We use the
peak signal-to-noise ratio (PSNR) [52], the structural similarity
index (SSIM) [52], the spectral angle mapper (SAM) [53], the
spatial correlation coefficient (SCC) [54], the erreur relative
globale adimensionnelle de synthèse (ERGAS) [55], and the
Q2n index [56], [57] (i.e., the Q4 for four-band MS images or
the Q8 for eight-band MS data) for the assessment at reduced
resolution. Instead, at full resolution, where no reference
image is available for validation, the quality with no reference
(QNR) [58] index consisting of a spectral quality index, Dλ,
and a spatial quality index, Ds , is adopted.
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B. Benchmark

We compare the proposed technique with some state-of-the-
art pansharpening approaches. For CS methods, we choose
for comparison the PRACS [9] and the robust BDSD
(RBDSD) [49]. The GLP framework is a widely used approach
for MRA methods. In this class, the context-based GLP
(C-GLP) [59] and the GLP with a full scale regression
model (GLP-Reg-FS) [43] are considered. Moreover, the com-
pared methods also include the VO method with LGC [37],
the high-quality Bayesian pansharpening (HQBP) [60], and
the pansharpening neural network (PNN) [19] and its
target-adaptive version (TPNN) [61]. It is worth to be noted
that we used the PNN and the TPNN distributed in [1] with
parameters shared by the authors. All compared methods are
summarized as follows.

1) CS Methods: PRACS [9] and RBDSD [49].
2) MRA Methods: C-GLP [59] and GLP-Reg-FS [43].
3) VO Methods: LGC [37] and HQBP [60].
4) ML Methods: PNN [19] and TPNN [61].

C. Reduced Resolution Assessment

This section is devoted to the comparison of the proposed
method with the adopted benchmark on data at reduced
resolution.

1) Pléiades Test Case: The Pléiades dataset consists of two
images (the PAN image and the four-band MS image with
a spatial resolution of 0.5 and 2 m, respectively) acquired
by the Pléiades satellite mission. The results are shown in
Fig. 6. The images in Fig. 6(a), (e), and (g) introduce some
spatial artifacts. Moreover, the images in Fig. 6(b), (h), and
(i), especially the one obtained by the proposed method, can
effectively alleviate the spectral and spatial distortions. The
residual images are depicted in Fig. 6(k)–(t). It is easy to
see that the proposed method gets the best results compared
with the other approaches [see Fig. 6(s)]. Table I reports
the quantitative comparison for the different methods. These
results corroborate the abovementioned analysis showing that
the proposed method gets the best index values with respect
to the techniques in the proposed benchmark.

2) QuickBird Test Case: The QuickBird dataset consists
of a PAN image (spatial resolution of 0.7 m) and four MS
bands (spatial resolution of 2.8 m) captured in the visible
near-infrared (NIR) spectrum. Fig. 7 depicts the fused results
obtained by the compared approaches. Fig. 7(a), (e), and (f) are
fuzzier than the others and characterized by an evident spatial
distortion. Instead, Fig. 7(g) has greater spatial accuracy but
paying it with a relevant spectral distortion. Fig. 7(b), (h), and
(i) have a better visual appearance compared with the other
images. By observing the small red box in the upper left corner
of the picture, the proposed method can better represent the
edges of the houses. Moreover, the residuals in Fig. 7 point
out the superiority of the proposed method. The best result is
shown in Fig. 7(s), especially having a look at the upper left
area of the image. Finally, Table II reports the quantitative
comparison among the methods in the benchmark. Again,
it corroborates the previous analysis. Indeed, the proposed
method shows the best indexes in Table II.

TABLE I

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 6. TPNN [61] IS
EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE II

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 7. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

TABLE III

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 8. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

3) IKONOS Toulouse Test Case: The IKONOS Toulouse
dataset consists of a PAN image (spatial resolution of 1 m)
and a four-band MS image (spatial resolution of 4 m) acquired
by the IKONOS sensor in the visible NIR spectrum over
the city of Toulouse, France. The visual results are shown
in Fig. 8. Fig. 8(c) and (e) suffer from spectral distortions,
and Fig. 8(e), (f), and (h) are affected by spatial distortions.
Instead, in Fig. 8(b) and (i), the best results are shown.
Table III reports the quantitative results pointing out that the
proposed approach is always in the first two positions in the
ranking.
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Fig. 7. Fusion results with close-ups for the compared approaches on the four-band QuickBird dataset at reduced resolution (size of the PAN image:
256 × 256). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60],
(g) PNN [19], (h) TPNN [61], (i) proposed method, and (j) GT, respectively. Residual images for the displayed red band: (k) PRACS [9], (l) RBDSD [49],
(m) C-GLP [59], (n) GLP-Reg-FS [43], (o) LGC [37], (p) HQBP [60], (q) PNN [19], (r) TPNN [61], (s) proposed, and (t) GT.

4) WorldView-3 Test Case: The WorldView-3 dataset con-
sists of two images: a PAN image with a spatial resolution
of 0.31 m and an eight-band MS image with a spatial
resolution of 1.24 m acquired by the WorldView-3 sensor
in the visible NIR spectrum. Fig. 9(a)–(j) shows the true
colors images of the fused products. It is clear to see that
the proposed method obtains more details than the other
approaches. In Fig. 9(a), (c), (f), and (g), some spatial details
are missing, as shown by the related close-ups in the figures.
Instead, Fig. 9(b), (e), and (h) depicts some spatial artifacts
in the vegetated area. Comparing the fused products with
the ground truth (GT), we can observe that the proposed
method achieves good results. Residual images can better
visualize the differences among the compared approaches [see
Fig. 9(k)–(t)]. It is easy to see that the edges of the houses
in the scenario under test make several problems among the
compared approaches. However, the proposed method still
shows better results than the others, as further testified by the
numerical results in Table IV.

D. Full-Resolution Assessment
We conduct some experiments on data at full resolution to

further assess the proposed method.
1) IKONOS Sichuan Test Case: The IKONOS Sichuan

dataset consists of a PAN image and a four-band MS image
acquired by the IKONOS sensor over the Sichuan region in
China. The size of the PAN image is 512 × 576. The results
of the methods in the benchmark are displayed in Fig. 10.
The proposed method is still valid for these four-band data
at full resolution. Because of the absence of a GT image, the
QNR index is calculated. As shown in Table V, the proposed
method can get the best overall accuracy, as measured by the
QNR index.

2) WorldView-2 Test Case: The WorldView-2 dataset is
a full-resolution set of data consisting of a PAN and an
eight-band MS data acquired by the WorldView-2 sensor.
The MS image is acquired in the visible NIR with a spatial
resolution of 1.84 m, and the PAN image (depicted in Fig. 11)
has a spatial resolution of 0.46 m. The size of the PAN image

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on April 18,2024 at 15:29:27 UTC from IEEE Xplore.  Restrictions apply. 



5408015 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 8. Fusion results with close-ups for the compared approaches on the four-band IKONOS Toulouse dataset at reduced resolution (size of the PAN
image: 512 × 512). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60],
(g) PNN [19], (h) TPNN [61], (i) proposed method, and (j) GT, respectively. Residual images for the displayed red band: (k) PRACS [9], (l) RBDSD [49],
(m) C-GLP [59], (n) GLP-Reg-FS [43], (o) LGC [37], (p) HQBP [60], (q) PNN [19], (r) TPNN [61], (s) proposed, and (t) GT.

TABLE IV

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 9. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

is 256 × 256. The fusion results are displayed in Fig. 11. The
proposed method gets better results than the others. Indeed,
by comparing it with the PAN image, the spatial details are

well preserved. About the quantitative results, our approach
gets the best values for all the considered metrics, as shown
in Table VI.

E. Discussion

1) Analysis of Parameters: In this section, we analyze the
parameters used in the proposed approach. Although there are
many parameters, some similarities between the spatial dimen-
sions of the TV regularization can be found. We can assume
that β1 = β2 and η2 = η3 for fine-tuning the parameters
in an easier way. For a better visualization, the metrics are
normalized by (metric − Mean(metric))/Std(metric), where
Mean(·) denotes the averaging operation and Std(·) denotes
the standard deviation operation. We only adjust one parameter
at a time, thus having all the others fixed. The test is performed
by using the Pléiades dataset. As shown in Fig. 12, the
parameters λ and η1 are more sensitive than the others. Thus,
we can fine-tune first the parameters λ and η1, then adjusting
the others. The parameters can be quickly fixed in this way,
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Fig. 9. Fusion results with close-ups for the compared approaches on the eight-band WorldView-3 dataset at reduced resolution (size of the PAN image:
256×256). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60], (g) PNN [19],
(h) TPNN [61], (i) proposed method, and (j) GT, respectively. Residual images for the displayed red band: (k) PRACS [9], (l) RBDSD [49], (m) C-GLP [59],
(n) GLP-Reg-FS [43], (o) LGC [37], (p) HQBP [60], (q) PNN [19], (r) TPNN [61], (s) proposed, and (t) GT.

TABLE V

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 10. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

even if we have eight parameters in our model. Considering
the best point to balance all the different metrics, we selected
the following set of parameters to be used in our experimental
analysis: λ = 5 × 10−5, η1 = 1 × 10−4, β1 = β2 = 1 × 10−7,
η2 = η3 = 1 × 10−3, β3 = 1 × 10−5, and η4 = 5 × 10−8.

TABLE VI

QUANTITATIVE RESULTS FOR THE TEST CASE IN FIG. 11. TPNN [61] IS

EXECUTED ON GPU (G). (BOLD: BEST; UNDERLINE: SECOND BEST)

2) Ablation Study: The proposed model consists of the
CDIF, the spectral fidelity term, and the conventional TV
regularization. To analyze the role of these three different
parts, the following three submodels are considered.
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Fig. 10. Fusion results with close-ups for the compared approaches on the four-band IKONOS Sichuan dataset at full resolution (size of the PAN image:
512×576). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60], (g) PNN [19],
(h) TPNN [61], (i) proposed method, and (j) PAN image, respectively.

Fig. 11. Fusion results with close-ups for the compared approaches on the eight-band WorldView-2 dataset at full resolution (size of the PAN image:
256 × 256). Visual results in true colors of (a) PRACS [9], (b) RBDSD [49], (c) C-GLP [59], (d) GLP-Reg-FS [43], (e) LGC [37], (f) HQBP [60],
(g) PNN [19], (h) TPNN [61], (i) proposed method, and (j) PAN image, respectively.

a) Submodel-I:

min
X

�∇X − G ◦ ∇P�2
F

+β1�∇1X�1 + β2�∇2X�1 + β3�∇3X�1. (28)

b) Submodel-II:

min
X

�XBS − Y�2
F + β1�∇1X�1 + β2�∇2X�1 + β3�∇3X�1.

(29)

c) Submodel-III:

min
X

�XBS − Y�2
F + λ�∇X − G ◦ ∇P�2

F . (30)

We compared the three submodels with the proposed model
on the Pléiades dataset. As shown in Table VII, all three

TABLE VII

QUANTITATIVE RESULTS FOR THE ABLATION STUDY ON THE PLéIADES

DATASET. (BOLD: BEST; UNDERLINE: SECOND BEST)

terms are necessary to get the highest performance, and the
importance of the two fidelity terms (i.e., the CDIF and the
spectral fidelity term) is evident.
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Fig. 12. Robustness analysis (using the SAM, the SCC, the ERGAS, and
the Q4 as metrics) for the parameters (a) λ, (b) β1, (c) β3, (d) η1, (e) η2, and
(f) η4 on the Pléiades dataset.

TABLE VIII

QUANTITATIVE RESULTS CONSIDERING THREE DIFFERENT STRATEGIES

TO ESTIMATE THE ADAPTIVE COEFFICIENTS, G, ON THE PLéIADES

DATASET. (BOLD: BEST; UNDERLINE: SECOND BEST)

3) Analysis About the Context-Aware Strategy: In this arti-
cle, we proposed the CDIF to extract spatial information in
an effective way. Specifically, we estimated different adaptive
coefficients, G, for different context regions. As shown by (7),
a direct way to estimate the adaptive coefficients is pixel-by-
pixel. Thus, the adaptive coefficients, G, can be calculated as

G = ∇(XB) � ∇�PB
�

(31)

where � denotes the elementwise division. The second way
is by exploiting local patches. Thus, we can split the original
data in patches estimating the adaptive coefficients, G, for each
patch.

Thus, we compare the CDIF solution with the two other
methods on the Pléiades dataset, again. The quantitative results
are summarized in Table VIII. It is easy to see that the CDIF
method shows the best performance.

4) Analysis About the Number of Clusters: The number of
clusters in a context-aware strategy using a k-means clustering
algorithm should be determined. Thus, we discuss, in this

Fig. 13. Robustness analysis by changing the number of clusters. The ERGAS
metric is used in (a) and (d). Instead, the Q2n is calculated in (b) and (e).
Finally, the running times are shown in (c) and (f). WV3 and QB stand for
WorldView-3 and QuickBird, respectively.

section, the influence on our approach of the changing of the
number of clusters. As shown in Fig. 13, the results are quite
stable by changing the number of clusters for the Pléiades test
case. Instead, better results can be obtained by increasing the
number of clusters for the QuickBird and WorldView-3 test
cases. However, better performance is paid by an increment
of the computational burden. Thus, a good balance between
the fusion accuracy and the computational burden can be found
by selecting a number of clusters equal to 5.

VI. CONCLUSION

In this article, we focused our attention on the CDIF with
adaptive coefficients estimation. More specifically, we applied
a clustering method to divide the pixels of an image into dif-
ferent context-based regions. Afterward, adaptive coefficients
are estimated by using a regression-based method for each
region. In addition, the CDIF is combined with a conventional
fidelity term and a total variation regularization to formulate
a novel variational pansharpening model that is solved by
designing an algorithm based on the ADMM framework. The
experiments conducted both at reduced resolution and full res-
olution demonstrated the superiority of the proposed method.
Furthermore, some discussions have also been presented to the
readers showing how to set the parameters of our approach, its
robustness with respect to the changing of this latter, an abla-
tion study, and the robustness with respect to the selection
of a number of clusters in the proposed methodology. Future
developments go toward the use of fidelity terms exploring
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various domains (rather than just the gradient domain) to
characterize the relationship between PAN and HRMS images.
Besides, concise and effective regularizers can be developed
to significantly enhance the capabilities of fidelity terms.
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